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Abstract

I study regulation of a screening monopolist when the regulator cares
about the distribution of surplus across heterogeneous consumers and the
firm. Consumers have private information about their valuations for qual-
ity and the firm about its market demand. The main result shows that
optimal regulation combines two policies commonly used in practice: base-
line regulation and cost-plus regulation. In baseline regulation, the regulator
mandates an affordable basic option while granting full flexibility in pricing
premium qualities—this targets redistribution within the consumer side.
In cost-plus regulation, the firm is required to sell each quality at produc-
tion cost plus a fixed fee—this limits information rents accruing to the firm.
I also compare firm-side contracting through regulation to consumer-side
contracting through subsidies. Subsidies are weaker in that they cannot
implement cross-subsidization (where the firm serves some consumers at
a loss) or flexibly screen the firm’s private information; their potential ad-
vantage is in reducing profits’ sensitivity to demand realizations.
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1 Introduction

Market power and distributional considerations are central motivations for reg-
ulatory intervention in private markets. These two rationales for intervention of-
ten interact: a firm exercising market power may design its offering strategically
in a way that generates distributional effects both among consumers and across
market sides. For example, concentration in the private health care industry—a
major policy concern in many countries—has implications for whether the poor
receive high-quality care and for the mark-ups the rich pay for their care.

Motivated by these considerations, I study optimal regulation of a monop-
olist when the regulator cares about the distribution of surplus in the market.
This is a non-trivial mechanism design problem because both the firm and
consumers hold private information relevant for their market behavior and the
regulator’s objective. I characterize trade-offs arising from the interaction of
screening problems on both sides of the market. The distributional objective
shapes the optimal allocation of information rents across market participants.

I analyze the following three-stage game. First, the regulator—the upstream
principal—commits to a regulatory mechanism that specifies transfers to the
firm as a function of what the firm offers in the market. Second, the firm—the
downstream principal—designs a menu of qualities and associated prices. Third,
consumers select from that menu. Consumers have a privately known will-
ingness to pay (WTP) for quality. Reflecting its superior information about its
customer base and demand conditions relative to the regulator, the firm pri-
vately observes a demand state that parameterizes the distribution of consumer
types. The regulator maximizes a weighted utilitarian objective, placing, on
average, a higher weight on low-WTP consumers than high-WTP consumers,
and a higher weight on consumers than on the firm.

My main result characterizes optimal inequality-aware regulation, which
combines two policies commonly observed in the real world: baseline regulation
and cost-plus regulation. In baseline regulation, the firm is required to offer
a basic-quality option at a below-cost price but gets full flexibility in pricing
premium qualities. In cost-plus regulation, the firm must offer each type of
the good at cost plus a fixed fee. The mechanism assigns the former schedule
if the firm’s demand state is above a cutoff (so that there are many high-WTP
consumers) and the latter if the demand state is below the cutoff.

Baseline regulation targets redistribution within the consumer side. It is
justified by consumers’ private information: consumption behavior is used to
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screen the value of redistributing to different consumers. “Poor” consumers
with high welfare weights are more likely to select the subsidized basic-quality
option. The firm’s participation is ensured through markups paid by “rich”
consumers on high-quality products. The basic quality consumed by the poor
is distorted downward from the efficient level: reducing the quality relaxes
the incentive compatibility constraint of the rich, allowing larger monetary
redistribution among consumers. Yet, the basic quality is higher than what the
poor would consume in an unregulated monopoly market.

Baseline regulation is widely used in real-world regulation and procurement
mechanisms.1 In health care, it corresponds to requiring private clinics or health
care insurers to offer basic-level care or insurance at a low price, cross-subsidized
by markups on premium care. Quality in health care could refer to, e.g., scopes
of service, waiting times, visit lengths, and staffing levels. A low basic-quality
mandate is justified by the fact that it enables a larger gap between the prices of
the basic option and the premium options. In some applications, quality maps
to quantity: baseline regulation corresponds to charging a higher per-unit price
for higher levels of water or electricity consumption. For example, in California,
regulators have long required privately owned water and electricity utilities to
use this kind of pricing scheme.2

Since the firm has private information about its demand relative to the
regulator, baseline regulation disproportionately benefits a firm facing many
consumers with high WTP for quality (e.g., a health care clinic serving a rich
clientele). This creates a trade-off between redistributing within the consumer
side and across the two sides of the market. The firm’s private information
thus justifies that the optimal mechanism combines baseline regulation with
cost-plus regulation, where the firm is required to offer each type of the good
at cost plus a fixed fee. Cost-plus regulation is one of the most commonly used
types of regulation (Armstrong and Sappington, 2007).

In low-demand states, the regulator’s motive to limit redistribution to the
firm dominates the motive to redistribute within the consumer side. Implement-
ing baseline regulation in such markets would require giving excessive rents to

1While I refer to the intervention in the paper as “regulation,” it can also be interpreted as a
single-bidder procurement setting.

2In this context, such pricing is often called “increasing block tariffs”. For an institutional
description and an empirical study on non-linear electricity pricing in California, see Borenstein
(2012). For an institutional description and an empirical study on non-linear water pricing in
North America, see Olmstead et al. (2007).
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high-demand firms to satisfy the firm’s incentive constraints. The mechanism
therefore assigns cost-plus regulation. By contrast, in high-demand states, redis-
tribution among consumers dominates. The cut-off equates the marginal social
gain from redistributing within the consumer side with the firm’s information-
rent cost of doing so. The mechanism is incentive-compatible for the firm
because, while cost-plus regulation gives no profit, a low-demand firm lacks
sufficient high-WTP consumers opting for premium qualities to recoup losses
from selling the basic quality below cost.

The optimal regulation mechanism also screens the average marginal value
of transferring one unit of money from the regulator’s funds to consumers in
the market. When there are many poor consumers, this marginal value is high;
the mechanism sets a low overall price level and compensates the firm from
public funds. When there are few poor consumers, the mechanism permits
a higher price level and reduces transfers to the firm. This screening margin
appears when there is a smoothly increasing marginal cost of public funds and
disappears if the regulator needs to satisfy budget balance.

The optimal mechanism characterized above requires sophisticated regula-
tion. In many markets, public policy operates through simpler consumer-side
instruments: subsidies or taxes tied to a consumer’s purchase, such as reim-
bursements in health care. Such tools may be administratively lighter and
sometimes legally more feasible. Motivated by these considerations, I also
analyze a variation of the model where the regulator directly contracts with
consumers, designing a subsidy schedule that depends only on what a con-
sumer purchases from the firm. The timing mirrors the baseline model: as
an upstream principal, the regulator first commits to the subsidy scheme, after
which the firm, as the downstream principal, best-responds by offering a menu
to consumers. The regulator should anticipate the firm’s strategic response
when designing the subsidy schedule.

Optimal subsidy design may give either higher or lower subsidies to con-
sumers purchasing expensive high-quality goods relative to those purchasing
cheaper low-quality goods. Subsidizing high-quality purchases strengthens the
firm’s incentives to offer higher qualities, but it conflicts with redistributive ob-
jectives. If reducing inequality is sufficiently important to the regulator, the
optimal policy assigns a higher subsidy to inexpensive basic-quality options,
more often selected by the poor.

While consumer-side subsidies may be a more realistic policy instrument rel-
ative to flexible firm-side regulation, contracting with the firm is more powerful
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along two dimensions. First, the regulator can require the firm to serve poor
consumers at a loss and finance that loss with markups on premium purchases.
Pure consumer-side subsidies leave the firm a non-negative surplus on each
transaction, and the firm typically earns positive profit even absent firm-side
private information. Second, regulation of the firm can properly screen the
firm’s private information by offering state-contingent options. The advantage
of consumer-side subsidies is that they make the regulator’s spending depen-
dent on the realized demand, which can reduce the sensitivity of the firm’s
profit to the demand state when the regulator redistributes on the consumer
side.

At a more abstract level, the paper is a novel attempt to model a situa-
tion where an upstream principal contracts on a downstream contract, screen-
ing both the downstream principal’s and downstream agents’ private informa-
tion. The mechanism balances the distribution of information rents between the
downstream principal and downstream agents. The comparison of firm-side
regulation and consumer-side subsidies highlights how contracting with the
downstream principal differs from direct contracting with downstream agents.

Related literature. The regulatory economics literature analyzes settings in
which the regulator is less informed than the firm about costs or consumer
demand (Baron and Myerson, 1982; Lewis and Sappington, 1988). I focus on
the latter information problem but model the consumer side more richly: con-
sumers have heterogeneous, privately known types that are screened through a
price-quality menu, and the regulator is concerned with redistribution among
consumers.

A small strand of the literature examines regulation of a screening monopo-
list when the firm has no private information but the regulator’s instruments are
limited (and the regulator is not concerned with consumer-side inequality). Be-
sanko et al. (1987) consider two policies: a price cap and a quality floor. Krishna
(1990) studies the impact of linear taxes. Schlom (2024) examines regulation of
a monopolist’s price distribution.

Of course, there is also a large literature on redistribution in markets. Public
finance has long studied nonlinear taxation, especially in labor markets (e.g.,
Mirrlees, 1971; Diamond, 1998; Saez, 2001). A recent strand on “inequality-
aware market design” analyzes general instruments (e.g., nonlinear taxation and
rationing) for addressing inequality in commodity markets (e.g., Akbarpour
et al., 2024; Pai and Strack, 2022). However, the literature on redistribution
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typically abstracts from the supply side by assuming competitive supply or a
government-controlled producer; by contrast, the firm’s incentive compatibility
is central in my model. In a similar vein, da Costa and Maestri (2019) study
optimal income taxation in monopsonistic labor markets. Stantcheva (2014)
studies optimal income taxation with adverse selection in labor markets, where
firms screen workers via compensation contracts. Martimort et al. (2020) and
Kang and Watt (2024) study inequality-aware menu design for a government-
controlled firm in the presence of an unregulated competitive fringe.

Finally, the paper connects to a scattered literature on dynamic games in
which multiple principals contract sequentially. Pavan and Calzolari (2009) pro-
vide general characterization results for settings in which multiple principals
contract sequentially with the same agent, who is the only party with private
information. A recent, innovative application of related ideas is Dworczak and
Muir (2024), who analyze the allocation of property rights. A “designer” (up-
stream principal) chooses an agent’s menu of outside options for a subsequent
interaction with a “principal” (downstream principal). To connect their analysis
with my setting, the designer of their model could be interpreted as a regulator
specifying a price cap for each quality. Their framework does not have a par-
ticipation constraint for the principal that would restrict the designer’s policy;
also, they study a linear environment and assume the designer weakly prefers
transfers from the agent to the principal—opposite to what I assume.

Organization of the article. The paper proceeds as follows. Section 2 presents
the environment and the regulator’s problem. Sections 3.1 and 3.2 analyze opti-
mal regulation when consumers have a binary type: first in a benchmark with a
publicly known demand state, then when the firm privately observes demand.
Section 3.3 extends the analysis to a continuous distribution of consumers’ WTP.
Section 4 studies consumer-side subsidies as an alternative instrument. Proofs
are collected in the Appendix.

2 Set-up

Market environment. I study a canonical monopoly screening framework (see,
e.g., Mussa and Rosen, 1978; Maskin and Riley, 1984) with a single firm serving
a unit mass of consumers. The profit-maximizing firm can produce a good of
quality 𝑞 ∈ 𝒬 = R+ at cost 𝑐(𝑞), where 𝑐 : 𝒬 → R+ is continuously differentiable,
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strictly increasing, and convex with 𝑐(0) = 0. The firm offers a menu of quality–
price pairs to consumers. A consumer with willingness-to-pay (WTP) type 𝜃

who consumes quality 𝑞 at price 𝑝 enjoys utility

𝜃𝑣(𝑞) − 𝑝,

where 𝑣 : 𝒬 → R+ is continuously differentiable, strictly increasing, and strictly
concave with 𝑣(0) = 0, lim𝑞→∞ 𝑣′(𝑞) = 0, and lim𝑞→0 𝑣

′(𝑞) = ∞. In some appli-
cations, it is natural to interpret 𝑞 as quantity rather than quality.

Consumers’ types. Each consumer is characterized by a privately known WTP
parameter 𝜃 ∈ Θ = [𝜃, 𝜃] and a binary unobservable label 𝑖 ∈ {𝑅, 𝑃} indicating
whether the consumer is “rich” or “poor”. Let 𝐹𝑅 and 𝐹𝑃 denote the distributions
of 𝜃 among rich and poor consumers, respectively, with 𝐹𝑅 strictly first-order
stochastically dominating 𝐹𝑃 : 𝐹𝑅(𝜃) < 𝐹𝑃(𝜃) for all 𝜃 ∈ (𝜃, 𝜃). Label 𝑖 does
not matter directly for consumers’ preferences over quality and consequently,
its observability to consumers is not important.

Demand states. The firm privately observes a demand state 𝛾 ∈ Γ = [0, 1]
which is the share of rich consumers in the market. The state is drawn from
distribution 𝐺 with differentiable density 𝑔. Conditional on label 𝑖, WTP is
independent of the state, so that when the realized share is 𝛾, the market WTP
distribution is

𝐹(𝜃 | 𝛾) = 𝛾 𝐹𝑅(𝜃) + (1 − 𝛾) 𝐹𝑃(𝜃).

Because 𝐹𝑅 strictly first-order stochastically dominates 𝐹𝑃 , for 𝛾′ > 𝛾, 𝐹(· |
𝛾′) strictly first-order stochastically dominates 𝐹(· | 𝛾). Higher 𝛾 therefore
corresponds to stronger demand: more rich consumers with a high willingness
to pay for quality.

Regulatory game. The timeline of the regulatory game is shown in Figure 1.
First, the firm privately observes 𝛾, and consumers privately observe their WTP
types 𝜃. Next, the regulator publicly commits to a transfer rule 𝑡 : ℳ → R

that maps any menu 𝑀 ∈ ℳ of quality–price options (𝑞, 𝑝) to a transfer from
the regulator to the firm.3 The firm—the downstream principal—then either

3A posted menu is any subset 𝑀 ⊆ 𝒬 × R of quality–price pairs. Although the transfer rule
𝑡 is, in principle, defined on the large domain of all menus, ℳ = {𝑀 : 𝑀 ⊆ 𝒬 × R }, it would
also suffice for the regulator to define it on a simpler “sufficient statistic” of the menu such as
the set of options on the menu that are undominated for consumers. Section 3 shows that even
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Firm privately
observes

demand 𝛾,
and consumers

privately
observe their
WTP types 𝜃.

Regulator de-
signs transfer 𝑡(·)

contingent on
the firm’s menu.

Firm chooses
a quality–price
menu or exits.

Consumers
select from the
menu or the

outside option.

Figure 1: Model timeline.

chooses its menu or exits (to obtain earnings zero). Finally, consumers choose
from the posted menu or take the outside option with payoff zero. I focus on
regulator-optimal perfect Bayesian equilibria of this game.

As is standard in the models of regulation with private demand information
(see Armstrong and Sappington, 2007), the regulator cannot condition trans-
fers on realized sales (here, the measure of units sold at each option). Policies
that avoid monitoring realized demand are easier to implement and not sus-
ceptible to demand manipulation. If realized demand were contractible, the
problem would reduce to the case with no firm-side informational asymmetry
(see Section 3.1).

By a taxation–principle argument, the framework is equivalent to a di-
rect–mechanism formulation in which the regulator commits ex ante to a deter-
ministic mapping from the firm’s message to a posted menu and a regulatory
transfer, and the firm then reports a message rather than explicitly choosing
a menu. This leaves the set of implementable allocations and the incentive
constraints unchanged. Whether allowing randomized mechanisms can strictly
improve upon such deterministic mechanisms is left for future work.

Consumers’ incentives. Let 𝑞 : Θ × Γ → R+ and 𝑝 : Θ × Γ → R denote
the equilibrium qualities and prices assigned to consumers. In state 𝛾, the
equilibrium payoff of a consumer with WTP 𝜃 is then

𝑢(𝜃, 𝛾; 𝑞(𝜃, 𝛾), 𝑝(𝜃, 𝛾)) = 𝜃 𝑣(𝑞(𝜃, 𝛾)) − 𝑝(𝜃, 𝛾).

Individual rationality requires that for all (𝜃, 𝛾),

𝑢(𝜃, 𝛾; 𝑞(𝜃, 𝛾), 𝑝(𝜃, 𝛾)) ≥ 0. (IR-C)

simpler transfer rules sometimes suffice.
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Incentive compatibility requires that, given the firm’s offering in any fixed de-
mand state 𝛾 ∈ Γ, every consumer weakly prefers her equilibrium choice of
quality–price pair to any choice made by some other consumer. So for all 𝜃 ∈ Θ

and 𝛾 ∈ Γ,
𝜃 ∈ argmax

𝜃′∈Θ
𝑢(𝜃, 𝛾; 𝑞(𝜃′, 𝛾), 𝑝(𝜃′, 𝛾)). (IC-C)

Firm’s incentives. Let 𝑡 : Γ → R denote the equilibrium transfer from the
regulator to the firm. Given demand state 𝛾, the firm’s equilibrium profit is

Π
(
𝛾; 𝑞(·, 𝛾), 𝑝(·, 𝛾), 𝑡(𝛾)

)
=

∫
Θ

(
𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾))

)
𝑑𝐹(𝜃 | 𝛾) + 𝑡(𝛾).

The firm’s individual rationality requires that it makes non-negative profit in
every demand state 𝛾 ∈ Γ,

Π
(
𝛾; 𝑞(·, 𝛾), 𝑝(·, 𝛾), 𝑡(𝛾)

)
≥ 0. (IR-F)

Furthermore, the firm’s incentive compatibility requires

𝛾 ∈ argmax
𝛾′∈Γ

Π(𝛾; 𝑞(·, 𝛾′), 𝑝(·, 𝛾′), 𝑡(𝛾′)), (IC-F)

so that the firm with demand 𝛾 cannot profitably deviate to the menu designed
for demand state 𝛾′; the full details can be found in the proof of Lemma 1.

Lemma 1. The regulator can implement the triple 𝑞 : Θ × Γ → R+, 𝑝 : Θ × Γ → R,
𝑡 : Γ → R with some regulation 𝑡 if and only if the constraints (IR-C), (IC-C), (IR-F)
and (IC-F) are satisfied.

Regulator’s objective. The regulator maximizes a weighted utilitarian objec-
tive in which welfare weights measure the regulator’s value of giving a unit of
money to each market participant. A consumer’s weight depends on whether
she is rich or poor, 𝜔𝑖 ∈ {𝜔𝑃 , 𝜔𝑅} with 𝜔𝑃 > 𝜔𝑅.4 The regulator also places
weight 𝜔𝐹 ∈ R++ on firm profits, with 𝜔𝐹 ≤ 𝜔𝑅. A natural special case is
𝜔𝐹 = 𝜔𝑅: the firm is owned by the rich and the mechanism trades off limiting

4Part of the literature on mechanism design and redistribution explicitly models heteroge-
neous values for money and assumes a designer maximizes a utilitarian objective where each
consumer’s weight is 1, so that the consumer’s value-for-money parameter effectively becomes
her welfare weight. See, e.g., Dworczak et al. (2021); the approach dates back at least to Weitz-
man (1977). A similar approach could be used here as well. Another approach to modeling
redistributive concerns, often taken in public finance literature, is to apply a concave transfor-
mation to individual utilities to obtain the individual’s social contribution; the weights can be
interpreted to arise from a local approximation of such a welfare function.
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rents accruing to the rich via ownership or consumption against losses in total
surplus.

The cost of public funds is 𝑘(𝑡), where 𝑘 is continuously differentiable, strictly
increasing and convex with lim𝑡→∞ 𝑘′(𝑡) = ∞, 𝑘′(0) ≤ 𝜔𝑅. A hard budget
constraint—i.e., a fixed cap on the regulator’s transfer—arises as a limiting case
of admissible 𝑘 (let the cost of public funds become arbitrarily large at the cap);
in this sense, 𝑘 generalizes a hard budget constraint.

The regulator’s expected payoff is∫
Γ

∫
Θ

(
E[𝜔𝑖 | 𝜃, 𝛾]𝑢(𝜃, 𝛾) + 𝜔𝐹 Π(𝛾) − 𝑘

(
𝑡(𝛾)

) )
𝑑𝐹(𝜃 | 𝛾)𝑑𝐺(𝛾) (1)

=

∫
Γ

[
𝛾𝜔𝑅

∫
Θ

𝑢(𝜃, 𝛾)𝑑𝐹𝑅(𝜃) + (1 − 𝛾)𝜔𝑃

∫
Θ

𝑢(𝜃, 𝛾)𝑑𝐹𝑃(𝜃) + 𝜔𝐹Π(𝛾) − 𝑘
(
𝑡(𝛾)

) ]
𝑑𝐺(𝛾).

By Lemma 1, an optimal regulation mechanism (i.e., an equilibrium of the game)
is then a triple (𝑞, 𝑝, 𝑡) maximizing (1) subject to constraints (IR-C), (IC-C), (IR-F)
and (IC-F). Any such optimum is constrained Pareto-efficient: there is no other
regulation that would make all consumers and the firm weakly better off and
someone strictly better off without increasing the regulator’s expected cost.

Discussion on the assumptions. This paper considers a partial equilibrium
framework for tractability and transparency: a single market is modeled, and
welfare weights are exogenous. The model therefore abstracts from other re-
distributive instruments, such as income taxation. One rationale is political
feasibility: policymakers regulating a specific market may lack authority or po-
litical capital in other policy domains. Another rationale is that governments
may have market-specific redistributive tastes (Tobin, 1970, calls this “specific
egalitarianism”). Recent work incorporating labor and consumption choices
in competitive settings with flexible instruments (e.g., Doligalski et al., 2025;
Ahlvik et al., 2024) shows that even when optimal income taxation is available,
it is still typically optimal to distort commodity markets because of redistributive
concerns. Nevertheless, those instruments are optimally designed jointly across
markets, so focusing on a single market entails a loss along that dimension.

While the framework assumes a monopolist (typical of industries such as
electricity, water, and postal services), it can also apply in markets where product
differentiation or search frictions create effectively captive demand (e.g., isolated
health care clinics). For screening under oligopolistic competition, see Rochet
and Stole (2002).
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3 Optimal inequality-aware regulation

3.1 Binary WTP type and known demand state

Preliminary analysis. I begin with a benchmark in which the demand state
𝛾 ∈ (0, 1) is publicly known.5 A consumer’s willingness to pay is deterministic
conditional on her label 𝑖 ∈ {𝑅, 𝑃}: rich consumers (𝑖 = 𝑅) have 𝜃 = 𝜃𝑅 and
poor consumers (𝑖 = 𝑃) have 𝜃 = 𝜃𝑃 with 𝜃𝑅 > 𝜃𝑃 . Thus there is a perfect
negative correlation between 𝜃 and the welfare weight 𝜔𝑖 . Throughout this
subsection, I write

𝑞𝑖 := 𝑞(𝜃𝑖 , 𝛾), 𝑝𝑖 := 𝑝(𝜃𝑖 , 𝛾) for 𝑖 ∈ {𝑃, 𝑅}.

With known 𝛾, the firm has no private information, so the firm’s incentive
compatibility (IC-F) does not have to be considered. The regulator must only
ensure that the firm makes non-negative profit. Given that the regulator values
redistribution from the firm to consumers, as E[𝜔𝑖 | 𝛾] = 𝛾𝜔𝑅 + (1 − 𝛾)𝜔𝑃 >

𝜔𝑅 ≥ 𝜔𝐹, the firm makes zero profit at the optimum,

𝛾
(
𝑝𝑅 − 𝑐(𝑞𝑅)

)
+ (1 − 𝛾)

(
𝑝𝑃 − 𝑐(𝑞𝑃)

)
+ 𝑡 = 0. (2)

If the firm earned strictly positive profit, the regulator would benefit from
requiring the firm to reduce both prices slightly, which would redistribute from
the firm to consumers without violating any constraints.

Furthermore, given that the regulator values redistribution from the rich to
the poor (𝜔𝑃 > 𝜔𝑅), she wants to increase price gap 𝑝𝑅 − 𝑝𝑃 subject to incentive
compatibility. The rich consumers’ IC constraint therefore binds at the optimum,

𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅 = 𝜃𝑅𝑣(𝑞𝑃) − 𝑝𝑃; (3)

otherwise the regulator would benefit from requiring the firm to slightly increase
𝑝𝑅 and decrease 𝑝𝑃 , keeping feasibility.

Let 𝑆𝑖(𝑞) := 𝜃𝑖𝑣(𝑞) − 𝑐(𝑞) denote money-metric surplus at quality 𝑞 for type
𝑖 ∈ {𝑃, 𝑅}. Using the two binding constraints (2) and (3) to eliminate prices
(𝑝𝑃 , 𝑝𝑅) from the planner’s objective, the regulator’s problem is equivalent to
choosing (𝑞𝑃 , 𝑞𝑅 , 𝑡) to maximize

E[𝜔𝑖 | 𝛾]
( unweighted surplus︷                          ︸︸                          ︷
𝛾𝑆𝑅(𝑞𝑅) + (1 − 𝛾)𝑆𝑃(𝑞𝑃) +𝑡

)
(4)

5The analysis is also very similar if the state 𝛾 is unknown to both the regulator and the firm
with a common prior.
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−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
(
𝑆𝑅(𝑞𝑃) − 𝑆𝑃(𝑞𝑃)

)︸                   ︷︷                   ︸
rich’s info rents

− 𝑘(𝑡).

The first line aggregates total gains from trade and the regulator’s transfer,
all weighted by the average consumer weight E[𝜔𝑖 | 𝛾] as if these could be
rebated to all consumers as lump-sum payments. However, rich consumers
receive information rents that are subtracted on the second line, weighted by
the difference between the average consumer weight and the rich consumers’
weight. The second line also accounts for the cost of public funds 𝑘(𝑡).

Optimal regulation with known 𝛾.

Proposition 1. In the binary-WTP environment with known 𝛾 ∈ (0, 1), there is an
optimal regulation mechanism with the following properties:

(i) Transfer to the firm satisfies 𝑘′(𝑡) = E[𝜔𝑖 | 𝛾].

(ii) The rich consume the efficient quality, uniquely defined by 𝑞𝑅 = argmax𝑞 𝑆𝑅(𝑞).

(iii) The poor face a downward distortion from the efficient quality. If 𝛾𝜔𝑃−𝜔𝑅

𝜔𝑃
< 𝜃𝑃

𝜃𝑅

then 𝑞𝑃 > 0 is the unique solution to

E[𝜔𝑖 | 𝛾](1 − 𝛾)𝑆′
𝑃(𝑞𝑃) = (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝑆′

𝑅(𝑞𝑃) − 𝑆′
𝑃(𝑞𝑃)),

and otherwise 𝑞𝑃 = 0.

(iv) The prices are pinned down by two binding constraints: the firm’s IR constraint
(2) and the rich consumers’ IC constraint (3):

𝑝𝑃 = 𝑐(𝑞𝑃) − 𝑡 − 𝛾
[
𝑆𝑅(𝑞𝑅) − 𝑆𝑅(𝑞𝑃)

]
,

𝑝𝑅 = 𝑐(𝑞𝑅) − 𝑡 + (1 − 𝛾)
[
𝑆𝑅(𝑞𝑅) − 𝑆𝑅(𝑞𝑃)

]
.

The proposition formalizes baseline regulation. The firm is required to sell a
subsidized basic-quality option to poor consumers. The quality of this option
is distorted downward from the efficient level to relax the rich consumers’
binding IC constraint (3), enabling a lower price for the basic-quality option
without violating the participation constraint of the firm (2). Rich consumers
receive the efficient quality level. I will later show that this mechanism can
be implemented through regulation of the basic-quality option alone, without
further restrictions on the firm’s menu.
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Comparison with efficient outcome. That inequality-awareness results in a
downward distortion of the poor’s quality from the efficient level may seem
paradoxical. However, the optimal regulation utilizes the property that rich
consumers value marginal changes in quality more, so lowering the poor’s
quality leads beneficially softens the rich’s incentive to choose that option. The
distortion stems from the unobservability of consumer types; if consumers’
types were not private, the regulator could redistribute without respecting the
rich consumers’ IC constraint, and there would be no reason to distort any
quality in the market.

The downward distortion depends on the utilitarian social welfare specifi-
cation. The regulator’s objective results in policies that are inequality-aware but
not inequality-averse, at least in terms of dispersion in consumed quality. The
utilitarian specification is not paternalistic: it respects the preferences of the
poor, who prefer to take a small downward distortion in quality given that it
allows a substantial decrease in the price they must pay. In particular, the op-
timal regulation mechanism is always constrained Pareto-efficient, as noted in
Section 2. By contrast, an alternative regulatory objective, such as an attempt to
allocate quality equally regardless of the willingness to pay, might well lead to
Pareto-inefficient policies that do not similarly respect the poor’s preferences.

Comparison with unregulated market. There is an interesting similarity be-
tween the mechanism of Proposition 1 and unregulated profit-maximizing
monopoly screening. The unregulated monopoly would also set the rich con-
sumers’ IC constraint to bind. Furthermore, it would make the poor’s IR con-
straint bind, and hence its profit could be written as a function of the allocation
as

unweighted surplus︷                          ︸︸                          ︷
𝛾𝑆𝑅(𝑞𝑅) + (1 − 𝛾)𝑆𝑃(𝑞𝑃) −

rich’s info rents︷                   ︸︸                   ︷
𝛾
(
𝑆𝑅(𝑞𝑃) − 𝑆𝑃(𝑞𝑃)

)
. (5)

Comparing (4) with (5), both the inequality-aware regulator and the unregulated
monopolist dislike rich consumers’ information rents. However, the regulator
discounts them relatively less because 𝜔𝑅 > 0: unlike the firm, the regulator
has a positive value for giving information rents to the rich. Hence, both use
downward distortion of the low option to relax the rich consumers’ IC, but the
regulator distorts less:

Remark 1. In the optimal regulation mechanism of Proposition 1, the poor receive a
weakly higher quality than under unregulated profit-maximizing monopoly pricing.
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Two differences relative to laissez-faire therefore emerge: (a) in terms of qual-
ity, optimal regulation increases the poor’s quality, and (b) in terms of prices,
optimal regulation lowers the price level so that the firm breaks even.

Simple implementation. The result of Remark 1 is also important for showing
that the regulator does not have to monitor the firm’s entire menu:

Remark 2. The optimum in Proposition 1 admits a simple implementation: it suffices
to mandate that the firm includes one option (𝑞, 𝑝) in its menu (and receives the transfer
𝑡), where (𝑞, 𝑝, 𝑡) = (𝑞𝑃 , 𝑝𝑃 , 𝑡) from the optimal mechanism. No further restrictions on
other qualities or prices are required.

The regulator can therefore implement the optimal mechanism by simply
making transfer 𝑡 to the firm contingent on the firm including a single option
(𝑞, 𝑝) in its menu. Given the mandated option (𝑞, 𝑝), the firm optimizes the
allocation subject to the constraint that both the poor and the rich obtain at
least the payoff they receive from the mandated option, solving the following
problem:

max
𝑞𝑃 ,𝑝𝑃 ,𝑞𝑅 ,𝑝𝑅

𝛾
(
𝑝𝑅 − 𝑐(𝑞𝑅)

)
+ (1 − 𝛾)

(
𝑝𝑃 − 𝑐(𝑞𝑃)

)
s.t. 𝜃𝑖𝑣(𝑞𝑖) − 𝑝𝑖 ≥ 𝜃𝑖𝑣(𝑞) − 𝑝, for 𝑖 ∈ {𝑃, 𝑅}, (IR vs mandate)

𝜃𝑖𝑣(𝑞𝑖) − 𝑝𝑖 ≥ 𝜃𝑖𝑣(𝑞 𝑗) − 𝑝 𝑗 , for 𝑖 , 𝑗 ∈ {𝑃, 𝑅}, (IC)

Given that the regulator sets (𝑞, 𝑝) to be the poor’s assigned option in Proposition
1, the firm solves the maximization problem by allocating the efficient quality
to the rich and quality 𝑞 to the poor, choosing prices so that the poor pay price 𝑝

and the IC constraint of the rich binds. The allocation of the optimal regulation
mechanism is therefore reproduced. Offering the poor (i) lower quality at a
lower price or (ii) higher quality at a higher price is not profit-maximizing: (i)
moves the poor further from their efficient quality without reducing the rich’s
information rents so long as (𝑞, 𝑝) remains available; (ii) is unprofitable because
𝑞 already exceeds the laissez-faire poor quality by Remark 1.

3.2 Binary WTP type and unknown demand state

Preliminary analysis. I now let the firm privately know the share of rich
consumers 𝛾 in its market demand. The state 𝛾 is continuously distributed with
full support on Γ = [0, 1] according to a cdf 𝐺 with density 𝑔 > 0. All other
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primitives are as in Section 3.1: consumers are rich or poor, and willingness
to pay is fixed within each group—𝜃𝑅 for the rich and 𝜃𝑃 for the poor, with
𝜃𝑅 > 𝜃𝑃 .

The firm’s incentive compatibility across states becomes central. The profit
in state 𝛾 is

Π(𝛾) = 𝛾
[
𝑝𝑅(𝛾) − 𝑐(𝑞𝑅(𝛾))

]
+ (1 − 𝛾)

[
𝑝𝑃(𝛾) − 𝑐(𝑞𝑃(𝛾))

]
+ 𝑡(𝛾),

where equilibrium qualities, prices and the transfer are now expressed as a
function of the demand state 𝛾. The realization 𝛾 then determines the firm’s
preferences over the following mark-up difference:

𝑟(𝛾) =
(
𝑝𝑅(𝛾) − 𝑐

(
𝑞𝑅(𝛾)

) )
−
(
𝑝𝑃(𝛾) − 𝑐

(
𝑞𝑃(𝛾)

) )
.

The mark-up difference 𝑟(𝛾) captures the extra mark-up the firm extracts from a
rich relative to a poor consumer. Intuitively, the more there are rich consumers
in the market (i.e. the higher 𝛾), the greater the firm’s value for a high mark-up
difference.

A standard Myersonian argument then yields:

Lemma 2. In the binary-WTP framework, the firm’s incentive compatibility (IC-F) is
satisfied if and only if for all 𝛾 ∈ Γ, the envelope condition

Π(𝛾) = Π(𝛾) +
∫ 𝛾

𝛾
𝑟(𝛾′)𝑑𝛾′. (6)

holds and 𝑟(·) is non-decreasing on Γ.

Unless 𝑟 ≡ 0, the envelope (6) implies that the firm earns positive information
rents at some states and the regulator cannot force Π(𝛾) = 0 for all 𝛾 as in
Section 3.1. Eliminating all information rents would require 𝑟(𝛾) ≡ 0, corre-
sponding to cost-plus regulation in every state, i.e., each quality priced at cost
plus (possibly) a common fixed fee.

The mark-up difference 𝑟(𝛾) also closely relates to the rich consumers’ rent:

𝑢(𝜃𝑅 , 𝛾) − 𝑢(𝜃𝑃 , 𝛾) = 𝑆𝑅(𝑞𝑅(𝛾)) − 𝑆𝑃(𝑞𝑃(𝛾)) − 𝑟(𝛾). (7)

Thus, increasing the mark-up difference 𝑟(𝛾) (holding the qualities fixed) de-
creases the rich consumers’ rent while increasing the rent of the firm in high
states. This creates a potential trade-off for regulation.

Using (6) and (7), the regulator’s payoff can be written in terms of the quality
allocation, the regulatory transfer 𝑡 and the mark-up difference 𝑟.
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Lemma 3. In the binary-WTP framework, the regulator’s expected payoff is∫ 𝛾

𝛾

{
E[𝜔𝑖 | 𝛾]

[
𝛾𝑆𝑅(𝑞𝑅(𝛾)) + (1 − 𝛾)𝑆𝑃(𝑞𝑃(𝛾))︸                                                ︷︷                                                ︸

avg. consumer weight × total surplus

+𝑡(𝛾)
]

−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
[
𝑆𝑅(𝑞𝑅(𝛾)) − 𝑆𝑃(𝑞𝑃(𝛾)) − 𝑟(𝛾)

]︸                                                             ︷︷                                                             ︸
within-consumer redistributive motive × rich rent

(8)

−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝐹

)
Π(𝛾)︸                     ︷︷                     ︸

across-side redistributive motive
× firm’s base rent

−
(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑟(𝛾)︸                                         ︷︷                                         ︸

across-side redistributive motive × firm’s info rent

− 𝑘
(
𝑡(𝛾)

)}
𝑑𝐺(𝛾).

The first line shows the gains from trade in the market and the transfer
to the firm, weighted by the consumers’ average welfare weight. The second
line subtracts the rich consumers’ rent, weighted by gap E[𝜔𝑖 | 𝛾] − 𝜔𝑅 that
reflects the redistributive motive within the consumer side. In contrast to the
benchmark where the firm had no private information (analyzed in Section 3.1),
it is not clear that the optimal regulation minimizes the rich consumers’ rent by
making their IC constraint bind; this would imply a high mark-up difference
𝑟(𝛾), leading to information rents to the firm. Those information rents are
subtracted on the third line and weighted by difference E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹,
reflecting the redistributive motive across the two sides of the market.

Optimal regulation. The following theorem shows that an optimal mechanism
has a cut-off at which cost-plus regulation is switched to baseline regulation.
The cut-off is a zero of function 𝛿 defined as

𝛿(𝛾) := 𝛾(1 − 𝛾)(𝜔𝑃 − 𝜔𝑅) − (E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾) . (9)

The function 𝛿 is the derivative of the integrand in (8) with respect to the mark-
up difference 𝑟(𝛾). The first term in the formula for 𝛿 captures the benefit of
increasing the mark-up difference in terms of consumer-side redistribution. The
second term reflects the cost of increasing the mark-up difference in terms of
the rent captured by the firm in high states 𝛾.

Theorem 1. In the binary-WTP framework, there exists an optimal regulation mecha-
nism with a cut-off 𝛾∗ > 𝛾 satisfying 𝛿(𝛾∗) = 0, such that

(i) Transfers satisfy 𝑘′(𝑡(𝛾)) = E[𝜔𝑖 | 𝛾] for all 𝛾 ∈ Γ.
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(ii) Cost-plus regulation is implemented for all 𝛾 ≤ 𝛾∗:

𝑞𝑅(𝛾) = argmax
𝑞

𝑆𝑅(𝑞), 𝑞𝑃(𝛾) = argmax
𝑞

𝑆𝑃(𝑞);

𝑝𝑅(𝛾) = 𝑐(𝑞𝑅(𝛾)) − 𝑡(𝛾), 𝑝𝑃(𝛾) = 𝑐(𝑞𝑃(𝛾)) − 𝑡(𝛾).

(iii) Baseline regulation is implemented for all 𝛾 > 𝛾∗:

𝑞𝑅(𝛾) = argmax
𝑞

𝑆𝑅(𝑞), 𝑞𝑃(𝛾) ≤ argmax
𝑞

𝑆𝑃(𝑞);

𝑞𝑃(𝛾) is decreasing—if locally strictly decreasing6, it satisfies

E[𝜔𝑖 | 𝛾](1 − 𝛾)𝑆′
𝑃(𝑞𝑃(𝛾)) −

(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
(
𝑆′
𝑅(𝑞𝑃(𝛾)) − 𝑆′

𝑃(𝑞𝑃(𝛾))
)

+
(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑆′

𝑅(𝑞𝑃(𝛾)) = 0;

the rich consumers’ IC constraint binds, which together with (6) fixes 𝑝𝑅 and 𝑝𝑃 .

An important step in the proof is to show that the optimal mark-up difference
𝑟(𝛾) lies in the interval [0, 𝑆𝑅(𝑞𝑅(𝛾))−𝑆𝑅(𝑞𝑃(𝛾))]. The lower bound holds because
𝑟(𝛾) < 0 would redistribute surplus from poor to rich consumers and generate
information rents for the firm in low-𝛾 states. The upper bound is imposed
by the incentive-compatibility constraint of rich consumers. Since the objective
function is linear in 𝑟(𝛾), Bauer’s maximum principle can be used to imply that
𝑟(𝛾) has a bang-bang structure: there exists a threshold 𝛾∗ such that 𝑟(𝛾) = 0 for
𝛾 ≤ 𝛾∗ (corresponding to cost-plus regulation) and 𝑟(𝛾) = 𝑆𝑅(𝑞𝑅(𝛾))−𝑆𝑅(𝑞𝑃(𝛾))
for 𝛾 > 𝛾∗ (corresponding to baseline regulation).

Part (i) of the theorem shows how the optimal regulation mechanism screens
the average value of allocating money to consumers in the market: the transfer
satisfies 𝑘′(𝑡(𝛾)) = E[𝜔𝑖 | 𝛾]. The firm’s incentives can be affected either through
direct payments 𝑡(𝛾) or through the overall price level, and the trade-off between
these instruments depends on the consumers’ average weight in the market.
When many consumers are poor, the regulator optimally subsidizes them by
requiring low prices and compensates the firm for this with high direct transfers
𝑡(𝛾). When many consumers are rich, high prices are allowed and the firm’s
transfer is reduced.

Part (ii) of the theorem shows that for low demand realizations 𝛾 ≤ 𝛾∗, the
regulator’s incentive to limit redistribution from consumers to the firm domi-
nates the incentive to redistribute within the consumer side; baseline regulation

6The decreasing function 𝑞𝑃 is said to be strictly decreasing at 𝛾 if 𝑞𝑃(𝛾 + 𝜀) − 𝑞𝑃(𝛾 − 𝜀) < 0

for all 𝜀 > 0.
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would give large rents to the firm. Cost-plus regulation is therefore imple-
mented: the firm’s IR constraint binds, the rich consumers’ IC constraint does
not bind, and the quality allocation is efficient.

Part (iii) of the theorem shows that for high demand realizations 𝛾 > 𝛾∗,
the motive to redistribute on the consumer side dominates. Baseline regulation
is implemented: the firm gets positive rents, the rich consumers’ IC constraint
binds, and low quality 𝑞𝑃(𝛾) is distorted downward to extract relatively more
from rich consumers. Yet, the presence of the firm’s private information weakens
the quality distortion relative to Section 3.1.

At the cut-off, 𝛿(𝛾∗) = 0: the marginal social gain from redistributing within
the consumer side is equated with the associated firm’s information rent cost.
Theorem 1 does not claim that there would be a unique value of 𝛾 such that
𝛿(𝛾) = 0, or even that there would exist a uniquely optimal cut-off. The char-
acterization of the theorem does not depend on that. However, if function
𝛿—which is negative for small 𝛾 and satisfies 𝛿(𝛾) = 0—happens to be strictly
single-crossing on (0, 1)7, then there is a unique interior 𝛾 with 𝛿(𝛾) = 0, and
the cutoff is optimally set at that crossing. It is also possible that 𝛿(𝛾) ≤ 0 for all
𝛾 ∈ [0, 1], in which case it is optimal to always implement cost-plus regulation.

It may feel problematic that cost-plus regulation is implemented instead of
baseline regulation exactly when many consumers are poor and there should be
an elevated concern about the poor. However, in such a market, within-market
inequality is not high, and therefore within-market redistribution among con-
sumers is not important. The optimal regulation mechanism takes the elevated
concern for the poor into account by raising the regulator’s spending to guaran-
tee a low overall price level.

Comparison with unregulated market. The optimal quality schedules of
Theorem 1 are illustrated in Figure 2, together with the efficient and laissez-faire
(unregulated profit-maximizing monopoly screening) benchmarks. Both the
regulator and the laissez-faire monopolist always allocate the efficient quality
to the rich. The laissez-faire monopolist always distorts the poor’s quality
downward to extract surplus from rich consumers. Optimal regulation does
not distort the poor’s quality in the cost-plus region 𝛾 < 𝛾∗. In baseline region
𝛾 ≥ 𝛾∗, optimal regulation distorts the poor’s quality downward from the
efficient level but raises the quality relative to the laissez-faire benchmark.

7That is, 𝛿(𝛾′) ≥ 0 ⇒ 𝛿(𝛾′′) > 0 for all 𝛾′′ > 𝛾′.

17



𝛾∗

𝛾∗ = 1/3

𝛾

𝑞

𝑞𝑅 = 𝑞FB
𝑅

= 𝑞LF
𝑅

𝑞𝑃 𝑞FB
𝑃

𝑞LF
𝑃

Figure 2: Qualities (𝑞𝑅 , 𝑞𝑃) in the optimal regulation mechanism when 𝐺 is
uniform on [0, 1], 𝜃𝑃 = 1, 𝜃𝑅 = 2, 𝜔𝑃 = 1, 𝜔𝑅 = 1/2, 𝜔𝐹 = 1/2, 𝑣(𝑞) = √

𝑞, and
𝑐(𝑞) = 𝑞2. Benchmarks: efficient allocation 𝑞𝐹𝐵 and laissez-faire allocation 𝑞𝐿𝐹

for the poor.

Remark 3. Relative to the laissez-faire benchmark, optimal regulation always weakly
increases the poor’s quality.

Simple implementation. Analogous to Section 3.1, implementing baseline
regulation does not require directly controlling the whole menu that the firm
offers in the market.

Remark 4. Baseline regulation options admit a simple implementation: for each 𝛾 in
the region 𝛾 > 𝛾∗, it suffices to mandate that the firm includes the option

(
𝑞𝑃(𝛾), 𝑝𝑃(𝛾)

)
in its menu and receives the transfer 𝑡(𝛾). No further menu restrictions are required.

The proof of Remark 4 is slightly more involved than that of corresponding
Remark 2 in the known-𝛾 case. This is because the proof must also rule out
profitable “double deviations” under the simple implementation, in which the
firm would select the option intended for type 𝛾′ and then reallocate quality
in a manner inconsistent with the optimal regulation for 𝛾′. In fact, conditional
on choosing the option intended for a high demand state 𝛾′, a low-𝛾 firm may
wish to allocate higher quality than 𝑞𝑃(𝛾′) to the poor. Nonetheless, the proof
shows that this double deviation as a whole is unprofitable for the low-𝛾 firm.
This is mainly because the higher the demand state 𝛾′, the greater the additional
payoff guaranteed to the poor by the basic option in addition to 𝑡(𝛾′), making the

18



𝛾∗

𝛾

𝛾

𝑝𝑅 (hard) 𝑝𝑃 (hard) 𝑝𝑅 (smooth) 𝑝𝑃 (smooth)

Figure 3: Prices under the optimal regulation mechanism in the parametric
example of Figure 2, under a hard budget constraint 0 (solid curves) and under
a smoothly increasing marginal cost of public funds, 𝑘(𝑡) = (1/3)𝑒 𝑡 (dashed
curves).

deviation less profitable. This ensures that the simple implementation delivers
the intended outcome of Theorem 1.

Delegation-type regulation. In many regulatory environments, the regulator
is unable to make transfers to the regulated firm; for example, the regulator may
have no access to public funds or may face legal constraints. In such settings,
regulation takes the form of delegation: the regulator provides the firm with a
set of allowed menus among which the firm chooses, without any associated
transfers between the regulator and the firm.8

Delegation-type regulation is optimal in the current framework if the reg-
ulator faces a hard budget constraint 0 without explicit cost of public funds.
The hard budget constraint can be represented by function 𝑘 that explodes for
𝑡 > 0, which arises as a limiting case of admissible 𝑘. Under the hard budget
constraint, Theorem 1 continues to apply, with part (i) replaced by 𝑡(𝛾) = 0

for all 𝛾. Parts (ii)–(iii) still characterize the quality allocation; in pricing, cost-

8Canonical models in regulatory economics typically allow transfers between the regulator
and the firm, while real-world regulatory policies such as quality standards and price caps often
do not involve such payments, as noted by Armstrong and Sappington (2007). The seminal work
in the theory of delegation is by Holmström (1978); for a more recent, influential contribution
with an application to monopoly regulation, see Alonso and Matouschek (2008).
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based pricing (i.e., cost-plus with no “plus”) is applied for 𝛾 ≤ 𝛾∗, and baseline
regulation is applied for 𝛾 > 𝛾∗.

The firm then chooses between pricing at cost and subsidizing the low-quality
option to charge a mark-up for a premium-quality good. When 𝛾 is small, ex-
pected demand for the premium quality is too low to recoup losses on the basic
option, so the firm self-selects into cost-based pricing. When 𝛾 is large, the
firm instead provides the basic quality at a below-cost price to gain flexibility in
premium pricing.

The regulator’s budget flexibility—captured by the smoothness of 𝑘—therefore
affects price levels but not the quality allocation. Under delegation, the price
paid by the poor for basic quality, 𝑝𝑃(𝛾), is (weakly) decreasing in 𝛾, since
baseline regulation is chosen only when high demand for high quality makes
cross-subsidization attractive. As 𝑘 becomes smoother, the regulator can com-
press the overall price level in markets with many poor consumers, and the
monotonicity of 𝑝𝑃 consequently fails, as in Figure 3, making 𝑝𝑃(𝛾) increase on
some subintervals even as the price gap remains increasing:

Remark 5. In the optimal regulation mechanism of Theorem 1:

(i) The price gap 𝑝𝑅(𝛾) − 𝑝𝑃(𝛾) is weakly increasing in 𝛾 on [𝛾, 𝛾].

(ii) Under a hard budget constraint (corresponding to delegation-type regulation),
𝑝𝑃(·) is weakly decreasing on [𝛾, 𝛾].

Weights and the distribution of rent. The optimal regulation and the implied
distribution of rent depend critically on the weight structure.

Remark 6. Fix an optimal regulation mechanism of Theorem 1 with cutoff 𝛾∗.

(i) Holding E[𝜔𝑖] fixed, a larger (smaller) spread 𝜔𝑃 −𝜔𝑅 weakly lowers (raises) the
cutoff in every optimal mechanism.

(ii) A larger (smaller) 𝜔𝐹 weakly lowers (raises) the cutoff in every optimal mechanism.

Part (i) of the remark shows that strengthening the consumer-side redistribu-
tive motive makes the regulator implement baseline regulation more often (as
the cut-off decreases): it both increases the social gain from redistributing from
the rich to the poor and lowers the perceived social cost of the firm’s informa-
tion rents.9 Part (ii) shows that weakening the across-side redistributive motive
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Regulation: E[𝑢𝑃(𝛾)] E[𝑢𝑅(𝛾)] E[Π(𝛾)]

Laissez-faire: E[𝑢𝑃(𝛾)] E[𝑢𝑅(𝛾)] E[Π(𝛾)]

0 𝜔𝑅

𝜔𝐹

0
𝜔𝑃 − 𝜔𝑅

Figure 4: Expected surplus distribution under optimal regulation (solid) and
unregulated monopoly screening (dashed) for different weight structures. Both
panels assume 𝐺 uniform on [0, 1], 𝜃𝑃 = 1, 𝜃𝑅 = 3/2, 𝑣(𝑞) = √

𝑞, 𝑐(𝑞) = 𝑞2, and
a hard budget so 𝑡 ≡ 0. Left figure: fix 𝜔𝑅 = 1/2, 𝜔𝑃 = 1 and vary 𝜔𝐹. Right
figure: fix 𝜔𝐹 = 1/4 and E[𝜔𝑖] = 3/4 and vary 𝜔𝑃 − 𝜔𝑅.

likewise makes the switch to baseline regulation optimal at lower values of 𝛾.
Figure 4 further illustrates how the rents of market participants vary with the

weight structure under optimal regulation (solid) and unregulated monopoly
screening (dashed). Regulation redistributes from the firm to consumers—most
strongly so if the within-consumer redistributive motive is weak (i.e., 𝜔𝑃 −𝜔𝑅 is
small) and 𝜔𝐹 is small. The gap between the payoffs of the rich and the poor is
higher under optimal regulation than under unregulated monopoly screening
(since regulation weakly raises the quality consumed by the poor), but less so if
𝜔𝑃 − 𝜔𝑅 and 𝜔𝐹 are high.

3.3 Continuous WTP type

Now consider the same model, but with the willingness to pay 𝜃 continuously
distributed with full support on [𝜃, 𝜃] for both the rich and the poor. As before,
𝐹𝑅 strictly first-order stochastically dominates 𝐹𝑃 .

If the regulator observes demand state 𝛾 and hence the firm has no private

9Using E[𝜔𝑖 | 𝛾′ ≥ 𝛾] = E[𝜔𝑖] +
(
E[𝛾′] − E[𝛾′ | 𝛾′ ≥ 𝛾]

)
(𝜔𝑃 − 𝜔𝑅), it is easy to observe that

spreading the difference𝜔𝑃−𝜔𝑅, while keepingE[𝜔𝑖],𝐺 and𝜔𝐹 fixed, lowersE[𝜔𝑖 | 𝛾′ ≥ 𝛾]−𝜔𝐹 .
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information, the regulator can—and will—again set transfers and prices to ex-
haust the firm’s profit. First-order stochastic dominance between 𝐹𝑅 and 𝐹𝑃 is
then enough to guarantee that the regulator optimally implements a continuous-
type counterpart of baseline regulation; quality is distorted downward to enable
lower prices for the poor choosing basic qualities without violating neither the
consumers’ incentive compatibility constraints nor the firm’s participation con-
straint.10

By contrast, when 𝛾 is privately known to the firm, the mechanism must
also satisfy the firm’s IC across demand states. Recall that if a firm with true
demand 𝛾 selects the menu designed for 𝛾′, its profit is∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾′) − 𝑐(𝑞(𝜃, 𝛾′)))𝑑𝐹(𝜃 | 𝛾) + 𝑡(𝛾′). (10)

Using 𝐹(𝜃 | 𝛾) = 𝛾𝐹𝑅(𝜃)+(1−𝛾)𝐹𝑃(𝜃), we can observe that the profit expression
(10) is affine in 𝛾. The firm’s incentive compatibility can then be shown to be
equivalent to

𝑅(𝛾) =
∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾)))( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃))𝑑𝜃

being non-decreasing in 𝛾, and the envelope condition

Π(𝛾) = Π(𝛾) +
∫ 𝛾

𝛾
𝑅(𝑧)𝑑𝑧

holding for all 𝛾.
In the following proposition, recall that I let 𝑆(𝑞, 𝜃) = 𝜃𝑣(𝑞) − 𝑐(𝑞) denote

the surplus, and the formula for function 𝛿 is

𝛿(𝛾) := 𝛾(1 − 𝛾)(𝜔𝑃 − 𝜔𝑅) − (E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾) .

Proposition 2. Consider the continuous–WTP environment above.

(i) If the share of rich consumers 𝛾 ∈ (0, 1) is known to the regulator, then in
any optimal regulation mechanism, the qualities are strictly distorted downward
relative to the efficient benchmark: for almost all 𝜃 ∈ (𝜃, 𝜃),

𝑞(𝜃, 𝛾) < argmax
𝑞

𝑆(𝑞, 𝜃)

and the price mark-up 𝑝(𝜃) − 𝑐(𝑞(𝜃)) is increasing in 𝜃 (strictly increasing
wherever 𝑞(𝜃) is strictly increasing), and 𝑘′(𝑡(𝛾)) = E[𝜔𝑖 | 𝛾].

10In contrast to the binary-WTP case discussed earlier, regulating only the lowest-quality
option is generally insufficient to implement the fully optimal allocation.
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(ii) If 𝛾 is privately known to the firm, then there is a cut-off 𝛾∗ ≥ inf{𝛾 ∈ [𝛾, 𝛾] :
𝛿(𝛾) ≥ 0} > 𝛾 such that any optimal mechanism has cost-plus regulation for
almost all 𝛾 ≤ 𝛾∗, 𝜃 ∈ [𝜃, 𝜃]:

𝑞(𝜃, 𝛾) = argmax
𝑞

𝑆(𝑞, 𝜃), 𝑝(𝜃, 𝛾) = 𝑐(𝑞(𝜃, 𝛾)) − 𝑡(𝛾),

whereas for any 𝛾 > 𝛾∗, rich consumers pay, on average, a strictly higher mark-up
than poor consumers. For almost all 𝛾, 𝑘′(𝑡(𝛾)) = E[𝜔𝑖 | 𝛾].

Proposition 2 again highlights the tension between redistributing on the con-
sumer side and limiting redistribution from consumers to the firm. Consumer-
side inequality calls for regulation of the type described in part (i) of the proposi-
tion, but when the firm has private information, cost-plus regulation is optimally
implemented in low demand states to limit the firm’s rents. In higher demand
states, the motive for redistribution among consumers shapes regulation so that
the rich pay, on average, a higher mark-up than the poor. A full characterization
of the optimal regulation in high demand states is complicated by the poten-
tial interaction of two ironing problems: ironing the quality schedule on the
consumer side and ironing the menu allocation on the firm side.

4 Contracting with consumers: optimal subsidy de-
sign

Preliminaries of subsidy design. Public policy sometimes operates through
consumer-side instruments (such as subsidies and taxes) rather than contracts
with firms. For example in health care, governments do not necessarily make
sophisticated contracts with firms but they may reimburse patients, which also
affects profit-maximizing providers’ offering.

This section studies such contracting with consumers. Instead of contracting
with the firm, the regulator commits to a subsidy schedule 𝜏 : 𝒬 → R,

announced prior to the firm’s choice of menu. The schedule maps a consumer’s
purchased quality to a (possibly negative) subsidy to the consumer, so that the
equilibrium utility of consumer 𝜃 is

𝑢(𝜃, 𝛾; 𝑞(𝜃, 𝛾), 𝑝(𝜃, 𝛾)) = 𝜃𝑣(𝑞(𝜃, 𝛾)) − 𝑝(𝜃, 𝛾) + 𝜏(𝑞(𝜃, 𝛾)).

The regulator’s objective, including the cost of public funds, remains as before.
The timeline of the game is summarized in Figure 5. Nature draws the

demand state and consumer types. As the upstream principal, the regulator
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Firm privately
observes

demand 𝛾,
and consumers

privately
observe their
WTP types 𝜃.

Regulator
designs subsidy

contract 𝜏.

Firm chooses
a menu (𝑞, 𝑝).

Consumers
select from the
menu or the

outside option.

Figure 5: Contracting with consumers: timeline.

moves first and announces 𝜏. The firm, as the downstream principal, chooses
its menu after observing subsidy design 𝜏 and its private information about 𝛾.
Finally, consumers select from the menu or the outside option and receive the
appropriate subsidies.

For the analysis of subsidy design I work with the continuous-type frame-
work of Section 3.3: for each group 𝑖 ∈ {𝑅, 𝑃}, 𝜃 is continuously distributed
with full support on [𝜃, 𝜃]. Throughout, I adopt the following additional as-
sumptions:

Assumption 1. (i) Regularity: 𝐹(· | 𝛾) is regular for all 𝛾 ∈ Γ, i.e., the virtual
value

𝜓(𝜃 | 𝛾) := 𝜃 − 1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾)

is strictly increasing on (𝜃, 𝜃).

(ii) Hazard-rate dominance: for all 𝜃 ∈ (𝜃, 𝜃),
𝑓𝑅(𝜃)

1 − 𝐹𝑅(𝜃)
<

𝑓𝑃(𝜃)
1 − 𝐹𝑃(𝜃)

.

Assumption 1(i) is a standard regularity condition that I impose on con-
sumers’ WTP types. Hazard-rate dominance assumption 1(ii) is slightly stronger
than first-order stochastic dominance assumed in Section 3 but weaker than
likelihood ratio dominance. It is straightforward to show that Assumption 1(ii)
implies that for any 𝛾′ > 𝛾, 𝐹(· | 𝛾′) strictly dominates 𝐹(· | 𝛾) in the hazard-rate
order.

As under firm-side regulation, I first consider the benchmark where 𝛾 is
publicly known (Section 4.1), and then the case where 𝛾 is privately observed
by the firm (Section 4.2).
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4.1 Known demand state

Preliminary analysis. Since 𝛾 is common knowledge in this subsection, I write
𝑞 and 𝑝 as functions of 𝜃 only for notational ease. Consumers’ incentive com-
patibility implies that for all 𝜃,

𝜃 𝑣
(
𝑞(𝜃)

)
− 𝑝(𝜃) + 𝜏

(
𝑞(𝜃)

)
= 𝑢 +

∫ 𝜃

𝜃
𝑣
(
𝑞(𝑧)

)
𝑑𝑧. (11)

Substituting (11) into the expression for the firm’s profit and integrating by
parts yields11

Π(𝛾) =
∫ 𝜃

𝜃

(
𝑝(𝜃) − 𝑐(𝑞(𝜃))

)
𝑑𝐹(𝜃 | 𝛾) (12)

=

∫ 𝜃

𝜃

[
𝜓(𝜃 | 𝛾) 𝑣(𝑞(𝜃)) − 𝑐(𝑞(𝜃)) + 𝜏(𝑞(𝜃)) − 𝑢︸                                               ︷︷                                               ︸

:= 𝜋(𝜃,𝑞(𝜃))

]
𝑑𝐹(𝜃 | 𝛾), (13)

where I introduce notation𝜋(𝜃, 𝑞(𝜃)) for the rent that the firm obtains from type
𝜃. The firm chooses a weakly increasing 𝑞(·) and sets optimally the base-level
utility 𝑢 = 0. Increases in subsidies are therefore passed through into higher
firm profits, which makes redistribution to consumers difficult.

Since 𝜓′ > 0 by Assumption 1, and 𝑣′ > 0, the rent 𝜋(𝜃, 𝑞) has strictly
increasing differences in (𝜃, 𝑞) for any subsidy design 𝜏. By monotone com-
parative statics (Milgrom and Shannon, 1994), 𝑞(𝜃) ∈ argmax𝑞 𝜋(𝜃, 𝑞) is then
weakly increasing in 𝜃, so the firm’s monotonicity constraint does not bind; the
firm chooses 𝑞(𝜃) to pointwise maximize 𝜋(𝜃, 𝑞(𝜃)). Therefore, by the envelope
theorem,

𝜋(𝜃, 𝑞(𝜃)) = 𝜋(𝜃, 𝑞(𝜃)) +
∫ 𝜃

𝜃
𝜓′(𝑧 | 𝛾) 𝑣(𝑞(𝑧)) 𝑑𝑧. (14)

Lemma 4. In the continuous-WTP environment with known 𝛾, a quality allocation
𝑞 : [𝜃, 𝜃] → 𝒬 is implementable by some subsidy schedule 𝜏 if and only if 𝑞 is weakly
increasing. The firm’s profit equals

Π = 𝜋(𝜃, 𝑞(𝜃)) +
∫ 𝜃

𝜃

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾),

11Since trading quality 0 at price 0 and subsidy 0 is payoff-equivalent with no trade, it is
without loss to focus on full coverage on the equilibrium path.
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and an implementing subsidy satisfies, for all 𝜃 ∈ Θ,

𝜏
(
𝑞(𝜃)

)
= 𝜋

(
𝜃, 𝑞(𝜃)

)
− 𝜓(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
+ 𝑐

(
𝑞(𝜃)

)
+

∫ 𝜃

𝜃
𝜓′(𝑧 | 𝛾) 𝑣

(
𝑞(𝑧)

)
𝑑𝑧.

(15)

Thus consumer-side subsidies can implement any monotone 𝑞, including the
efficient allocation. The proof of Lemma 4 shows that for any weakly increasing
allocation 𝑞, a subsidy schedule defined by (15) for all 𝑞 ∈ 𝑞[Θ] (i.e. on the
image) and 𝜏(𝑞) = 𝜏 for all 𝑞 ∈ 𝒬 \ 𝑞[Θ] is well-defined and indeed incentivizes
the firm to provide the desired allocation when 𝜏 is low enough.

As seen in formula (13), the effect of the subsidy on the firm’s incentives
is similar to a modification of the cost function. Lemma 4 is therefore tech-
nically close to stating that any weakly increasing quality allocation is profit-
maximizing for some cost function (when negative costs are allowed).

The regulator can adjust the base-level rent𝜋(𝜃),12 but is limited by the firm’s
option not to serve some consumers, which implies 𝜋(𝜃) ≥ 0. When the rent
from trading with low-WTP consumers is minimized, the firm still derives pos-
itive “obedience rents” from trades with high-WTP consumers. This contrasts
with the firm-regulation framework, where the regulator can cross-subsidize
across consumers by contracting over the entire menu and, when the firm has
no private information, enforce zero profit.

Optimal subsidy design with known demand state. By using Lemma 4 and
the consumers’ envelope condition (11), each component of the regulator’s
payoff—the firm’s profit, the regulator’s spending, and consumer utilities—
can be written as a functional of the allocation rule 𝑞 and the base rent 𝜋(𝜃).
The regulator’s problem can therefore be reduced to choosing non-decreasing
𝑞 and 𝜋(𝜃) ≥ 0. A first-order approach yields the following characterization for
the optimal choices, where

𝜅 := 𝑘′
(∫

Θ

𝜏
(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾)

)
denotes the induced marginal cost of public funds.

Proposition 3. In the continuous-WTP environment with known 𝛾, an optimal subsidy
design exists. For almost every 𝜃 at which 𝑞 is strictly increasing,13 the allocation

12For brevity, write 𝜋(𝜃) instead of 𝜋(𝜃, 𝑞(𝜃)).
13A nondecreasing function 𝑞 is strictly increasing at 𝜃 if 𝑞(𝜃 + 𝜀) − 𝑞(𝜃 − 𝜀) > 0 for all 𝜀 > 0.
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satisfies

0 = 𝜅
[
𝜃 𝑣′(𝑞(𝜃)) − 𝑐′(𝑞(𝜃))

]
(efficiency)

−
(
𝜅 − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾]

) 1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) (consumers’ rent)

−
(
𝜅 − 𝜔𝐹

) 1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣′(𝑞(𝜃)), (firm’s rent)

and the marginal subsidy satisfies

𝜏′
(
𝑞(𝜃)

)
=

𝑣′(𝑞(𝜃))
𝜅

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾)

(
E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾] −

(
𝜅 − 𝜔𝐹

)
𝜓′(𝜃 | 𝛾)

)
. (16)

Finally, either 𝜅 = 𝜔𝐹 and 𝜋(𝜃) ≥ 0, or 𝜅 > 𝜔𝐹 and 𝜋(𝜃) = 0.

Proposition 3 decomposes the regulator’s first-order condition into: (i) an effi-
ciency term (marginal money-metric surplus weighted by 𝜅), (ii) a consumers’ rent
term, and (iii) a firm’s rent term. The last two terms justify distortions relative
to the efficient benchmark. They capture that increasing quality raises high-𝜃
consumers’ and the firm’s rents, which the regulator prefers to limit when the
weights on those consumers and the firm are low.

The formula (16) for the marginal subsidy shows that the optimal subsidy
may be decreasing or increasing. For example, if the regulator has no redis-
tributive motive—set 𝜅 = 𝜔𝑅 = 𝜔𝑃 = 𝜔𝐹—the formula reduces to

𝜏′
(
𝑞(𝜃)

)
= 𝑣′(𝑞(𝜃)) 1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) ,

so implementing the efficient allocation requires an increasing subsidy to correct
the monopolist’s incentive to underprovide quality.

However, efficiency is not generally optimal under the inequality-aware ob-
jective. A decreasing subsidy schedule becomes optimal when: (i) high WTP
𝜃 is a strong signal of being rich and the planner assigns low weight 𝜔𝑅 to the
rich; (ii) the planner places relatively low weight 𝜔𝐹 on the firm; and (iii) the
virtual value 𝜓(𝜃 | 𝛾) has a large derivative.14

4.2 Unknown demand state

Preliminary analysis. I now return to the environment where the firm pri-
vately knows its demand state 𝛾. The regulator commits to a single subsidy
schedule 𝜏 : 𝒬 → R. In Section 4.1, I showed that for any fixed 𝜏, the firm’s

14The large derivative implies that the firm has strong incentives to underprovide quality.
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profit-maximizing selling mechanism satisfies

𝑞(𝜃, 𝛾) ∈ argmax
𝑞≥0

{
𝜓(𝜃 | 𝛾) 𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞)

}
for any (𝜃, 𝛾), and it follows directly from Lemma 4 that an appropriately chosen
subsidy schedule can implement any non-decreasing allocation 𝑞(·, 𝛾) for a fixed
demand state 𝛾.

A key technical observation of this section is that for any (𝜃, 𝛾), there exists
some 𝜃′ such that 𝜓(𝜃 | 𝛾) = 𝜓(𝜃′ | 𝛾). Then for any schedule 𝜏,

argmax
𝑞≥0

{
𝜓(𝜃 | 𝛾) 𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞)

}
= argmax

𝑞≥0

{
𝜓(𝜃′ | 𝛾) 𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞)

}
,

so the firm’s profit-maximizing allocation to type 𝜃 in state 𝛾 coincides with
the profit-maximizing allocation to type 𝜃′ in state 𝛾. Therefore, once the
quality allocation in state 𝛾 is fixed, the quality allocation for every other state
is pinned down by virtual–value matching.15 This implies that with consumer
subsidies, the regulator does not have similar state-contingent flexibility as when
contracting directly with the firm (as in Section 3).

Lemma 5. Any non-decreasing quality allocation 𝑞(·) := 𝑞(·, 𝛾) in the highest de-
mand state is implementable by consumer-side subsidies. Moreover, the schedule 𝑞(·)
determines 𝑞(𝜃, 𝛾) for all 𝛾 and almost every 𝜃, according to

𝑞(𝜃, 𝛾) = 𝑞(𝜓−1(𝜓(𝜃 | 𝛾) | 𝛾)),

and together with base-level rent 𝜋(𝜃, 𝛾) ≥ 0, it pins down all payoffs.

Optimal subsidy design with privately known demand state. Let 𝐿(𝜃, 𝛾) be
the WTP type to which the firm allocates the same quality in demand state 𝛾

as it allocates to WTP type 𝜃 in demand state 𝛾; such type can be found for
all 𝜃 ∈ [𝜃, 𝜃], 𝛾 ∈ [𝛾̂(𝜃), 𝛾], where 𝛾̂(𝜃) := (𝜓(𝜃|·))−1(min{𝜓(𝜃|𝛾),𝜓(𝜃|𝛾)}) and
(𝜓(𝜃|·))−1 denotes the inverse in the 𝛾-argument. Then

𝐿(𝜃, 𝛾) := 𝜓−1 (𝜓(𝜃 | 𝛾) | 𝛾
)

for all 𝜃 ∈ [𝜃, 𝜃], 𝛾 ∈ [𝛾̂(𝜃), 𝛾].

Furthermore, let 𝜅(𝛾) := 𝑘′
(∫

Θ
𝜏
(
𝑞(𝜃, 𝛾)

)
𝑑𝐹(𝜃 | 𝛾)

)
denote the marginal cost of

public funds.

Proposition 4. Fix the environment above. The regulator’s problem can be reduced to
choosing a weakly increasing 𝑞 : Θ → 𝒬 and base-level rent 𝜋(𝜃, 𝛾) ≥ 0. An optimal

15A slight caveat is that argmax𝑞 𝜓(𝜃 | 𝛾)𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞) is not necessarily a singleton, but
the proof of Lemma 5 shows that nevertheless, for any 𝛾, allocation 𝑞(· | 𝛾) pins down 𝑞(𝜃, 𝛾)
for almost every 𝜃.
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design exists. For almost every 𝜃 where 𝑞 is strictly increasing, an optimal choice of 𝑞
satisfies16

0 =

∫ 𝛾

𝛾̂(𝜃)

{
𝜅(𝛾)

[
𝐿𝑣′(𝑞) − 𝑐′(𝑞)

]𝜓′(𝜃 | 𝛾)
𝜓′(𝐿 | 𝛾) (efficiency)

− (𝜅(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝐿, 𝛾])1 − 𝐹(𝐿|𝛾)
𝑓 (𝐿|𝛾)

𝜓′(𝜃 | 𝛾)
𝜓′(𝐿 | 𝛾)𝑣

′(𝑞) (consumers’ rent)

− (𝜅(𝛾) − 𝜔𝐹)
1 − 𝐹(𝐿|𝛾)
𝑓 (𝐿|𝛾) 𝜓′(𝜃|𝛾) 𝑣′(𝑞)

}
𝑓 (𝐿|𝛾)𝑑𝐺(𝛾)

(firm’s obedience rent)

−
∫ 𝛾̂(𝜃)

𝛾
(𝜅(𝛾) − 𝜔𝐹)𝜓′(𝜃 | 𝛾)𝑣′(𝑞)𝑑𝐺(𝛾). (firm’s information rent)

and elsewhere, 𝑞 is locally constant. Moreover, either
∫
𝜅(𝛾)𝑑𝐺(𝛾) = 𝜔𝐹 and𝜋(𝜃, 𝛾) ≥

0, or
∫
𝜅(𝛾)𝑑𝐺(𝛾) > 𝜔𝐹 and 𝜋(𝜃, 𝛾) = 0.

Analogous to the known-demand benchmark (Proposition 3), the expression
for the optimal policy in Proposition 4 consists of an efficiency component, a
consumers’ rent component, and a firm’s rent component. The regulator’s trade-
offs are quite similar; the left panel of Figure 6 illustrates how the optimal subsidy
varies with redistributive preferences. When redistributive concerns are strong
(case i in Figure 6), the optimal subsidy again decreases with quality, limiting
rents accruing to the firm and to high-𝜃 consumers. When such concerns are
weak (case ii), the optimal subsidy increases with quality to counteract the
monopolist’s tendency to underprovide quality, despite the induced rents. A
difference from the known–demand case is that the trade-offs are now averaged
across demand states through the aggregator 𝐿, so the schedule need not be
optimal in any particular realized state.

A further difference from the known–demand case is that two distinct rent
components for the firm arise. The firm’s obedience rent has a counterpart in
the known-demand benchmark, whereas the firm’s information rent is new and
arises for the following reason. Under consumer subsidies, the firm must earn a
nonnegative rent𝜋on any consumer it serves. The regulator can set the rent from
the lowest consumer type to zero in the highest demand state, 𝜋(𝜃, 𝛾) = 0. In
any lower demand state 𝛾 < 𝛾, however, the firm has stronger incentives to serve
consumer type𝜃, and trade with type𝜃 can still be strictly profitable,𝜋(𝜃, 𝛾) > 0.
The information rent component arises because the quality allocation affects
𝜋(𝜃, 𝛾).

16To be concise, I use notation 𝑞 for 𝑞(𝜃) and notation 𝐿 for 𝐿(𝜃, 𝛾).
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𝑞

𝜏(
𝑞
)

(i) strong redistributive taste
(ii) weak redistributive taste

0 1
0

𝛾

Π
(𝛾
)

Subsidy design
Firm-side regulation

Figure 6: Left: Optimal subsidy 𝑠(𝑞) under two cases of redistributive tastes:
(i) strong (𝜔𝑃=2, 𝜔𝑅=1, 𝜔𝐹=0) and (ii) weak (𝜔𝑃=

5
3 , 𝜔𝑅=

4
3 , 𝜔𝐹=

2
3). Primitives:

𝐺 ∼ 𝑈[0, 1], 𝑓𝑃(𝜃)=5
2 − 𝜃, 𝑓𝑅(𝜃)=𝜃 − 1

2 for 𝜃 ∈ [1, 2], 𝑣(𝑞)=√𝑞, 𝑐(𝑞)=1
2 𝑞

2, and 𝑘

linear with slope 1 on the relevant subset of the domain. Right: Firm’s profit
Π(𝛾) when the regulator implements the same quality allocation 𝑞 : Θ × Γ → 𝒬
corresponding to part (i) of the left figure, with either consumer subsidies or
firm regulation.

Comparison with firm-side regulation. The analysis thus far has highlighted
two forces that favor contracting with the firm over contracting with consumers:
(i) consumer-side subsidies cannot implement cross-subsidization, so the firm
typically earns positive profit even absent firm-side private information; and (ii)
subsidies offer limited scope for screening the firm’s private information and
for conditioning allocations on realized demand.

Nevertheless, I do not establish global dominance of firm-side regulation
over consumer-side subsidies. The following channel can work in favor of
subsidies. Because realized sales are not contractible, transfers under firm-side
regulation cannot depend directly on the demand state. Under consumer-side
contracting, by contrast, the regulator’s spending varies with realized demand.
Let Π𝐶(𝛾) and Π𝐹(𝛾) denote the firm’s profit when the same allocation 𝑞 : Θ ×
Γ → 𝒬 is implemented via consumer-side subsidies or via firm-side regulation,
respectively. Under differentiability,

Π′
𝐶(𝛾) −Π′

𝐹(𝛾) =

∫
Θ

𝜏
(
𝑞(𝜃, 𝛾)

) (
𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)

)
𝑑𝜃,

which is negative when subsidies to the poor exceed those to the rich (case (i)
of Figure 6). In that case, consumer-side contracting reduces the sensitivity of
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profits to 𝛾 and thereby leaves less relative information rent to a high-𝛾 firm
(right panel of Figure 6). This benefit of consumer-side contracting is small when
there is little uncertainty about market demand (cf. Section 4.1) or the motive
for consumer-side redistribution is small (either because 𝜔𝑃 − 𝜔𝑅 is small or
because willingness-to-pay 𝜃 is only weakly informative about 𝑖 ∈ {𝑅, 𝑃}); in
these cases, contracting with the firm outperforms consumer-side subsidies.17

The comparison above also raises the question of what is achievable when
both instruments are available. With a mechanism that maps the firm’s report
into (i) a price–quality menu and (ii) a consumer-subsidy schedule, the reg-
ulator can require cost-based pricing to enforce zero profit and use subsidies
to implement optimal redistribution among consumers subject to consumer
IC. An optimal mechanism is then outcome-equivalent to optimal firm-side
regulation under known demand (see Propositions 1 and 2(i)). In practice, reg-
ulators often face constraints on instruments, and whether firm-side regulation,
consumer-side subsidies, or both are feasible is application-specific. A univer-
sity procuring on-campus food service typically contracts with the provider
without subsidizing downstream customers, whereas a central government de-
signing redistributive policy in consumer markets (e.g., transport or food) may
find it more feasible to rely on consumption taxes and subsidies than to regulate
individual firms’ offerings.

Policy instruments in subsidy design. The regulator may benefit from aug-
menting the subsidy scheme with a subsidy for those who do not purchase
from the firm. An alternative interpretation for this additional element is that
the regulator can offer a zero-quality public option—which consumers may
choose instead of participating in the private market—and design a price for
this option. By raising this outside option by Δ and simultaneously increasing
all purchase-contingent subsidies by Δ, the regulator keeps the firm’s alloca-
tion incentives unchanged while redistributing Δ from its own budget to all
consumers. The design of the outside option therefore serves as a lump-sum
redistributive instrument between consumers and the regulator (absent this de-
sign, type𝜃 always receives payoff 0). The level of the outside option is optimally
chosen so that the expected marginal cost of public funds equals the average
consumer weight, E[𝜅(𝛾)] = E[𝜔𝑖], but the rest of the subsidy design remains
characterized by Proposition 4.

17I have not identified a numerical example in which contracting with consumers would
strictly outperform contracting with the firm.
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A second issue regarding the available instruments is that throughout this
section, subsidies have been assumed to depend on allocation 𝑞. While this is
a natural starting point, an alternative formulation would be to let the subsidy
be conditioned on the transaction price, 𝜏𝑝 : 𝒫 → R.18 Unlike in a competitive
environment, price-based and quality-based subsidies can imply different sets
of implementable allocations and distribution of rent.19 Finally, the subsidies
could potentially be even more complicated, conditioning on both price and
quality. A comprehensive analysis of different consumer-side instruments in a
monopoly market is left for future research.

5 Conclusion

The two perhaps most important forces that misalign a profit-maximizing firm’s
decisions with social objectives are lack of competition and redistributive con-
cerns. I study optimal regulation in that environment. Private information on
both sides of the market makes policy design a nontrivial mechanism design
problem. Consumers’ private information makes it optimal to use consumption
behavior to screen consumers’ welfare weights, rationalizing baseline regula-
tion. The firm’s private information makes it optimal to distort the mechanism
to limit the firm’s information rents, rationalizing cost-plus regulation. Both
instruments are widespread in practice.

On an applied level, I build a bridge between two well-developed literatures.
Market power and optimal regulatory solutions have long been studied in in-
dustrial organization literature, whereas redistribution has long been studied
in public economics. Yet there is relatively little research that tries to under-
stand the interaction of imperfect competition and economic inequality. This
motivates further theoretical and empirical work.

On a more technical level, I develop a tractable sequential framework with
an upstream and a downstream principal, where the downstream principal
holds private information. The model is natural for studying the interaction

18Conditioning the subsidy on price is especially attractive if the quality of service is hard to
specify in a contract, as discussed in Hart et al. (1997).

19This can be confirmed in a linear model, where 𝑣(𝑞) = 𝑞 and 𝑐(𝑞) = 𝑐𝑞, with 𝑞 restricted to
a compact interval. To analyze optimal design of price subsidies in this setting, represent the
envelope as 𝑢(𝜃,𝛾)

𝜃 =
𝑢(𝜃,𝛾)

𝜃 −
∫ 𝜃

𝜃

𝜏𝑝 (𝑝(𝑧,𝛾))−𝑝(𝑧,𝛾)
𝑧2 𝑑𝑧, write the firm’s profit as a functional of 𝑝, and

proceed using an approach analogous to this paper’s analysis of quality-based subsidies. More
details regarding the analysis of price-based subsidies are available upon request.
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of a regulator, a firm, and consumers, but the structure also seems suitable for
studying, e.g., multiple levels or generations of government or vertical relation-
ships among firms.

An important assumption in the current work—and an avenue for future
work—is the extent of regulatory commitment. This paper assumes full com-
mitment (as quite standard), but in practice commitment may be more limited
(e.g., due to political cycles and other reasons for renegotiation). Limited com-
mitment can lead to ratchet effects (see, e.g., Freixas et al., 1985). In a similar
vein, an interesting variation of the subsidy design framework of Section 4
would be one where the moves of the regulator and the firm are reversed. For
example, if the firm moves first, anticipating the regulator’s desire to support
the poor through subsidies, the firm might find it optimal to design an offering
that leaves the poor very needy.
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Reference 68

A.1 Proof of Lemma 1

Proof. I will first prove the only-if direction: the constraints (IR-C), (IC-C), (IR-F),
and (IC-F) are necessary to be satisfied in equilibrium. The necessity of (IR-C)
and (IR-F) is immediate from the availability of the outside options for con-
sumers and the firm. In any state 𝛾, a consumer of type 𝜃 can choose any option
(𝑞(𝜃′, 𝛾), 𝑝(𝜃′, 𝛾)), hence (IC-C) is necessary. The necessity of (IC-F) follows
since the deviation profit of firm 𝛾 from choosing the equilibrium menu of firm
𝛾′ is

Π
(
𝛾; 𝑞(·, 𝛾′), 𝑝(·, 𝛾′), 𝑡(𝛾′)

)
=

∫
Θ

(
𝑝(𝜃, 𝛾′) − 𝑐(𝑞(𝜃, 𝛾′))

)
𝑑𝐹(𝜃 | 𝛾) + 𝑡(𝛾′),

as each consumer type’s choice after the deviation must be the same as in state
𝛾′.

I will then prove the if direction: Suppose that the constraints (IR-C), (IC-C),
(IR-F), and (IC-F) hold for (𝑞, 𝑝, 𝑡), and I will prove that there exists some transfer
function 𝑡 : ℳ → R such that (𝑞, 𝑝, 𝑡) is implemented in the continuation game.

Let 𝑀(𝛾) = {(𝑞, 𝑝) : (𝑞, 𝑝) = (𝑞(𝜃, 𝛾), 𝑝(𝜃, 𝛾)) for some 𝜃 ∈ Θ} be the menu
chosen by the firm in state 𝛾. The firm’s equilibrium profit, excluding the
regulator’s transfer, is bounded above by some finite 𝑆.20 Let

𝑡(𝑀) :=

𝑡(𝛾) if 𝑀 = 𝑀(𝛾) for some 𝛾,

−𝑆 otherwise.

This is a well-defined function because if 𝑀(𝛾) = 𝑀(𝛾′) then 𝑡(𝛾) = 𝑡(𝛾′) for
constraint (IC-F) to be satisfied. Given that (IC-C) and (IR-C) are satisfied,
consumers act sequentially rationally. A firm with any demand 𝛾 does not
prefer exiting by (IR-F). Furthermore, the firm does not have a strictly profitable
deviation to an off-path menu 𝑀′ such that 𝑡(𝑀′) = −𝑆, and it does not have a
strictly profitable deviation to an on-path menu 𝑀(𝛾′) by (IC-F). □

20E.g., define 𝑆 := sup𝛾∈Γ
∫
Θ
sup𝑞∈𝒬

(
𝜃𝑣(𝑞) − 𝑐(𝑞)

)
𝑑𝐹(𝜃|𝛾); given the Inada-type assumptions

on 𝑣 and 𝑐, there is a unique finite sup𝑞∈𝒬
(
𝜃𝑣(𝑞) − 𝑐(𝑞)

)
for all 𝜃.
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A.2 Proof of Proposition 1

Proof. Since the firm has no private information, the regulator chooses 𝑞𝑅 , 𝑞𝑃 ∈
R≥0, 𝑝𝑅 , 𝑝𝑃 , 𝑡 ∈ R to maximize

𝛾𝜔𝑅(𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅) + (1 − 𝛾)𝜔𝑃(𝜃𝑃𝑣(𝑞𝑃) − 𝑝𝑃)
+𝜔𝐹(𝛾(𝑝𝑅 − 𝑐(𝑞𝑅)) + (1 − 𝛾)(𝑝𝑃 − 𝑐(𝑞𝑃))) − 𝑘(𝑡)

subject to the firm’s IR constraint

𝛾(𝑝𝑅 − 𝑐(𝑞𝑅)) + (1 − 𝛾)(𝑝𝑃 − 𝑐(𝑞𝑃)) + 𝑡 ≥ 0, (17)

the consumers’ IC constraints

𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅 ≥ 𝜃𝑅𝑣(𝑞𝑃) − 𝑝𝑃 (18)

𝜃𝑃𝑣(𝑞𝑃) − 𝑝𝑃 ≥ 𝜃𝑃𝑣(𝑞𝑅) − 𝑝𝑅 , (19)

and the consumers’ IR constraints

𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅 ≥ 0 (20)

𝜃𝑃𝑣(𝑞𝑃) − 𝑝𝑃 ≥ 0. (21)

According to a standard argument, the IR constraint of the poor (21) and the
IC constraint of the rich (18) imply the IR constraint of the rich (20).

The firm’s IR constraint (17) binds in the solution as otherwise 𝑝𝑅 and 𝑝𝑃

could be decreased by small 𝑑𝑝 > 0, which would not violate any constraint
and would increase the regulator’s payoff by (E[𝜔𝑖] − 𝜔𝐹)𝑑𝑝, which is positive
by assumption.

Moreover, the rich consumers’ IC constraint (18) binds as otherwise the
regulator could increase 𝑝𝑅 by some small 𝑑𝑝 > 0 and decrease 𝑝𝑃 by 𝛾

1−𝛾 𝑑𝑝

without violating any constraints, and this would increase the regulator’s payoff
by 𝛾𝑑𝑝(𝜔𝑃 − 𝜔𝑅) which is positive by assumption.

Given that the two constraints bind, we may solve for 𝑝𝑅 and 𝑝𝑃 as a function
of 𝑞𝑅, 𝑞𝑃 , and 𝑡 and plug that into the regulator’s objective to write the objective
as

E[𝜔𝑖 | 𝛾]
(
𝛾
[
𝜃𝑅𝑣(𝑞𝑅) − 𝑐(𝑞𝑅)

]
+ (1 − 𝛾)

[
𝜃𝑃𝑣(𝑞𝑃) − 𝑐(𝑞𝑃)

]
+ 𝑡

)
(22)

− (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃)𝑣(𝑞𝑃) − 𝑘(𝑡).

To obtain part (i) of the proposition, note that given the assumptions about
function 𝑘, there is an optimal 𝑡 which solves 𝑘′(𝑡) = E[𝜔𝑖 | 𝛾] and satisfies 𝑡 > 0.

To obtain part (ii) of the proposition, note that the marginal effect of 𝑞𝑅 on
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(22) is
E[𝜔𝑖 | 𝛾] 𝛾

[
𝜃𝑅𝑣

′(𝑞𝑅) − 𝑐′(𝑞𝑅)
]
.

Given that 𝑣 is a continuously differentiable, strictly concave function such that
lim𝑞→∞ 𝑣′(𝑞) = 0 and lim𝑞→0 𝑣

′(𝑞) = ∞ and 𝑐 is a continuously differentiable,
increasing and convex function, there is a uniquely optimal 𝑞𝑅 which is interior
and solves 𝜃𝑅𝑣

′(𝑞𝑅) − 𝑐′(𝑞𝑅) = 0, proving part ii of the proposition.
To obtain part (iii) of the proposition, note first that

𝛾
𝜔𝑃 − 𝜔𝑅

𝜔𝑃
<

𝜃𝑃

𝜃𝑅
(23)

=⇒ E[𝜔𝑖 | 𝛾](1 − 𝛾)𝜃𝑃 − (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃) > 0 (24)

where E[𝜔𝑖 | 𝛾] = 𝛾𝜔𝑅 + (1 − 𝛾)𝜔𝑃 is used.
Therefore, under condition (23), and since 𝑣 is concave and 𝑐 convex, we

have

E[𝜔𝑖 | 𝛾](1 − 𝛾)𝜃𝑃𝑣
′′(𝑞) − (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′′(𝑞) < 0

(25)

=⇒ E[𝜔𝑖 | 𝛾](1 − 𝛾)(𝜃𝑃𝑣
′′(𝑞) − 𝑐′′(𝑞)) − (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′′(𝑞) < 0

(26)

for all 𝑞 ∈ R+, so the first-order condition for 𝑞𝑃 ,

E[𝜔𝑖 | 𝛾](1− 𝛾)
[
𝜃𝑃𝑣

′(𝑞𝑃) − 𝑐′(𝑞𝑃)
]
− (E[𝜔𝑖 | 𝛾] −𝜔𝑅)𝛾(𝜃𝑅 −𝜃𝑃)𝑣′(𝑞𝑃) = 0, (27)

is sufficient for optimality. Note that 𝑣′(𝑞) goes to infinity as 𝑞 → 0, so under
condition (24), the LHS of (27) is positive for low enough positive value of 𝑞𝑃 .
Furthermore, since the LHS of (27) is negative for large enough value of 𝑞𝑃 (since
𝑣′(𝑞) → 0 as 𝑞 → ∞), there is a (unique) value of 𝑞𝑃 that solves (27).

On the other hand,

𝛾
𝜔𝑃 − 𝜔𝑅

𝜔𝑃
≥ 𝜃𝑃

𝜃𝑅
(28)

=⇒ E[𝜔𝑖 | 𝛾](1 − 𝛾)𝜃𝑃 − (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃) ≤ 0

=⇒ E[𝜔𝑖 | 𝛾](1 − 𝛾)
[
𝜃𝑃𝑣

′(𝑞) − 𝑐′(𝑞)
]
− (E[𝜔𝑖 | 𝛾] − 𝜔𝑅)𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞) < 0 ∀𝑞 ∈ R≥0,

so under condition (28), it is uniquely optimal to set 𝑞𝑃 = 0, which finalizes
the proof.

Note that the assumptions guarantee that there is a unique “efficient” quality
for the poor, 𝑞𝐹𝐵

𝑃
> 0 such that𝜃𝑃𝑣

′(𝑞𝐹𝐵
𝑃
)−𝑐′(𝑞𝐹𝐵

𝑃
) = 0, and the regulator’s optimal

choice of 𝑞𝑃 is lower than 𝑞𝐹𝐵
𝑃

regardless of whether it satisfies (27) or 𝑞𝑃 = 0.

36



Furthermore, the price satisfies

𝑝𝑃 = 𝑐(𝑞𝑃) − 𝛾
[
(𝜃𝑅𝑣(𝑞𝑅) − 𝑐(𝑞𝑅)) − (𝜃𝑅𝑣(𝑞𝑃) − 𝑐(𝑞𝑃))

]
− 𝑡

where the expression inside the square brackets is positive when 𝑞𝑅 is chosen
efficiently, i.e. to maximize 𝜃𝑅𝑣(𝑞𝑅) − 𝑐(𝑞𝑅). So then, since 𝑡 > 0 in the optimal
policy, 𝑝𝑃 < 𝑐(𝑞𝑃). Since 𝜃𝑃𝑣(𝑞𝑃) > 𝑐(𝑞𝑃) for all 𝑞𝑃 ≤ 𝑞𝐹𝐵

𝑃
, then 𝜃𝑃𝑣(𝑞𝑃)− 𝑐(𝑞𝑃) >

0 so the IR constraints are also clearly satified in the solution characterized in
Proposition 1.

□

A.3 Proof of Remark 1

Proof. Consider the problem of an unregulated monopolist. Standard argu-
ments imply that the monopolist sets poor IR and rich IC binding, so profit
maximization over (𝑞𝑃 , 𝑞𝑅) is equivalent to maximizing

𝛾
(
𝜃𝑅𝑣(𝑞𝑅) − (𝜃𝑅 − 𝜃𝑃)𝑣(𝑞𝑃) − 𝑐(𝑞𝑅)

)
+ (1 − 𝛾)

(
𝜃𝑃𝑣(𝑞𝑃) − 𝑐(𝑞𝑃)

)
.

The first-order condition for an interior 𝑞𝑀
𝑃

> 0 is

(1 − 𝛾)
(
𝜃𝑃𝑣

′(𝑞𝑀𝑃 ) − 𝑐′(𝑞𝑀𝑃 )
)
= 𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞𝑀𝑃 ). (29)

In the regulator’s optimum (Proposition 1), an interior 𝑞★
𝑃
> 0 satisfies

(1 − 𝛾)
(
𝜃𝑃𝑣

′(𝑞★𝑃) − 𝑐′(𝑞★𝑃)
)
=
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

E[𝜔𝑖 | 𝛾]
𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞★𝑃). (30)

Since
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

E[𝜔𝑖 | 𝛾]
< 1,

it is straightforward that a solution to (30) is greater than a solution to (29).
Furthermore, if the regulator’s solution is at the corner 𝑞★

𝑃
= 0, so that we have

(1 − 𝛾)𝜃𝑃 ≤ E[𝜔𝑖 |𝛾]−𝜔𝑅

E[𝜔𝑖 |𝛾] 𝛾(𝜃𝑅 − 𝜃𝑃), then also (1 − 𝛾)𝜃𝑃 ≤ 𝛾(𝜃𝑅 − 𝜃𝑃), so that the
monopolist’s solution is also at the corner, 𝑞𝑀

𝑃
= 0. Hence in all cases 𝑞★

𝑃
≥ 𝑞𝑀

𝑃
.
□

A.4 Proof of Remark 2

Proof. Let (𝑞★
𝑃
, 𝑝★

𝑃
, 𝑞★

𝑅
, 𝑝★

𝑅
, 𝑡★) denote the regulator’s optimal mechanism from

Proposition 1. Consider the following regulatory instrument: the firm must
include the option

(𝑞, 𝑝) = (𝑞★𝑃 , 𝑝★𝑃)
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in any posted menu; the regulator pays the transfer 𝑡★ irrespective of the rest
of the menu. The firm then freely chooses any additional options to maximize
profit.

The firm’s problem is then effectively to choose (𝑞𝑃 , 𝑝𝑃 , 𝑞𝑅 , 𝑝𝑅) to maximize
its profit

𝛾(𝑝𝑅 − 𝑐(𝑞𝑅)) + (1 − 𝛾)(𝑝𝑃 − 𝑐(𝑞𝑃)) + 𝑡 (31)

subject to the constraint that both the rich and the poor obtain at least the utility
they obtain from the mandated option:

𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅 ≥ 𝜃𝑅𝑣(𝑞) − 𝑝, (32)

𝜃𝑃𝑣(𝑞𝑃) − 𝑝𝑃 ≥ 𝜃𝑃𝑣(𝑞) − 𝑝, (33)

and the rich IC constraint

𝜃𝑅𝑣(𝑞𝑅) − 𝑝𝑅 ≥ 𝜃𝑅𝑣(𝑞𝑃) − 𝑝𝑃 . (34)

Clearly, (33) must bind (otherwise the firm would want to increase 𝑝𝑃), and
either (32) or (34) must bind (otherwise the firm would want to increase 𝑝𝑅).

If 𝑞𝑃 > 𝑞, then (34) binds and (32) does not, and the marginal benefit from
increasing 𝑞𝑃 is

(1 − 𝛾)
(
𝜃𝑃𝑣

′(𝑞𝑃) − 𝑐′(𝑞𝑃)
)
− 𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞𝑃). (35)

which is negative when 𝑞𝑃 > 𝑞 = 𝑞★
𝑃

(see the proof of Remark 1), so that it is
profitable to decrease 𝑞𝑃 .

On the other hand, if 𝑞𝑃 < 𝑞, then (32) binds and (34) does not, and the
marginal benefit from increasing 𝑞𝑃 is

(1 − 𝛾)
(
𝜃𝑃𝑣

′
𝑃(𝑞𝑃) − 𝑐′𝑃(𝑞𝑃)

)
which is positive when 𝑞𝑃 < 𝑞 = 𝑞★

𝑃
, so it is profitable to increase 𝑞𝑃 .

It follows that the firm maximizes profit by setting (𝑞𝑃 , 𝑝𝑃 , 𝑞𝑅 , 𝑝𝑅) = (𝑞★
𝑃
, 𝑝★

𝑃
, 𝑞★

𝑅
, 𝑝★

𝑅
).

□

A.5 Proof of Lemma 2

Proof. By the envelope theorem, a necessary condition for incentive compatibil-
ity is

𝑝𝑃(𝛾) − 𝑐(𝑞𝑃(𝛾)) + 𝑡(𝛾) = Π(𝛾) − 𝛾𝑟(𝛾) +
∫ 𝛾

𝛾
𝑟(𝛾′)𝑑𝛾′.
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We can now write the difference between the profits that a firm with demand
type 𝛾 obtains from a menu designed to type 𝛾 and a menu designed to type 𝛾̂

as

𝛾𝑟(𝛾) + 𝑝𝑃(𝛾) − 𝑐(𝑞𝑃(𝛾)) + 𝑡(𝛾) −
(
𝛾𝑟(𝛾̂) + 𝑝𝑃(𝛾̂) − 𝑐(𝑞𝑃(𝛾̂)) + 𝑡(𝛾̂)

)
=

∫ 𝛾

𝛾
𝑟(𝛾′)𝑑𝛾′ −

(
𝛾𝑟(𝛾̂) − 𝛾̂𝑟(𝛾̂) +

∫ 𝛾̂

𝛾
𝑟(𝛾′)𝑑𝛾′

)
=

∫ 𝛾

𝛾̂
(𝑟(𝛾′) − 𝑟(𝛾̂))𝑑𝛾′.

The first equality uses the envelope formula and the second equality is house-
keeping. The final expression is clearly non-negative for all 𝛾, 𝛾̂ ∈ Γ if and only
if 𝑟(𝛾) is non-decreasing in 𝛾. □

A.6 Proof of Lemma 3

Proof. The regulator’s payoff is given by

∫ 𝛾

𝛾

(
𝛾𝜔𝑅𝑢(𝜃𝑅 , 𝛾) + (1 − 𝛾)𝜔𝑃𝑢(𝜃𝑃 , 𝛾) + 𝜔𝐹Π(𝛾) − 𝑘(𝑡(𝛾))

)
𝑑𝐺(𝛾). (36)

First, using the definitions of 𝑢, 𝑆 and 𝑟, we can write

𝑢(𝜃𝑅 , 𝛾) − 𝑢(𝜃𝑃 , 𝛾) = 𝑆𝑅
(
𝑞𝑅(𝛾)

)
− 𝑆𝑃

(
𝑞𝑃(𝛾)

)
− 𝑟(𝛾). (37)

There is a “resource constraint” such that

𝛾𝑢(𝜃𝑅 , 𝛾) + (1− 𝛾)𝑢(𝜃𝑃 , 𝛾) = 𝛾𝑆𝑅
(
𝑞𝑅(𝛾)

)
+ (1− 𝛾)𝑆𝑃

(
𝑞𝑃(𝛾)

)
+ 𝑡(𝛾) −Π(𝛾). (38)

We then obtain

𝛾𝜔𝑅𝑢(𝜃𝑅 , 𝛾) + (1 − 𝛾)𝜔𝑃𝑢(𝜃𝑃 , 𝛾)
=E[𝜔𝑖 | 𝛾]

[
𝛾𝑢(𝜃𝑅 , 𝛾) + (1 − 𝛾)𝑢(𝜃𝑃 , 𝛾)

]
−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾 (𝑢(𝜃𝑅 , 𝛾) − 𝑢(𝜃𝑃 , 𝛾))

=E[𝜔𝑖 | 𝛾]
[
𝛾𝑆𝑅

(
𝑞𝑅(𝛾)

)
+ (1 − 𝛾)𝑆𝑃

(
𝑞𝑃(𝛾)

)
+ 𝑡(𝛾) −Π(𝛾)

]
(39)

−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
[
𝑆𝑅
(
𝑞𝑅(𝛾)

)
− 𝑆𝑃

(
𝑞𝑃(𝛾)

)
− 𝑟(𝛾)

]
.

where the first equality simply uses E[𝜔𝑖 | 𝛾] = 𝛾𝜔𝑅+(1−𝛾)𝜔𝑃 , and the second
equality uses (37) and (38).

Furthermore,∫ 𝛾

𝛾
(E[𝜔𝑖 | 𝛾] − 𝜔𝐹)Π(𝛾) 𝑑𝐺(𝛾) =

∫ 𝛾

𝛾
(E[𝜔𝑖 | 𝛾] − 𝜔𝐹)

(
Π(𝛾) +

∫ 𝛾

𝛾
𝑟(𝛾′)𝑑𝛾′

)
𝑑𝐺(𝛾)

(40)
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=

∫ 𝛾

𝛾

(
(E[𝜔𝑖 | 𝛾] − 𝜔𝐹)Π(𝛾) +

(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑟(𝛾)

)
𝑑𝐺(𝛾)

where the first equality uses Lemma 2 and the second uses integration by parts.
We can then use results (39) and (40) to write the regulator’s payoff (36) as∫ 𝛾

𝛾

{
E[𝜔𝑖 | 𝛾]

[
𝛾𝑆𝑅(𝑞𝑅(𝛾)) + (1 − 𝛾)𝑆𝑃(𝑞𝑃(𝛾)) + 𝑡(𝛾)

]
−

(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
[
𝑆𝑅(𝑞𝑅(𝛾)) − 𝑆𝑃(𝑞𝑃(𝛾)) − 𝑟(𝛾)

]
−

(
E[𝜔𝑖 | 𝛾] − 𝜔𝐹

)
Π(𝛾) −

(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑟(𝛾) − 𝑘

(
𝑡(𝛾)

)}
𝑑𝐺(𝛾).

□

A.7 Proof of Theorem 1

I use shorthand notations

𝜔̄𝑖(𝛾) := E[𝜔𝑖 | 𝛾] = 𝛾𝜔𝑅 + (1 − 𝛾)𝜔𝑃 , 𝜔̄+(𝛾) :=

∫ 𝛾

𝛾
𝜔̄𝑖(𝛾′) 𝑑𝐺(𝛾′)
1 − 𝐺(𝛾) .

Let
𝑆𝑅(𝑞) := 𝜃𝑅𝑣(𝑞) − 𝑐(𝑞), 𝑆𝑃(𝑞) := 𝜃𝑃𝑣(𝑞) − 𝑐(𝑞),

and denote the (unique) efficient qualities by

𝑞𝐹𝐵𝑅 ∈ argmax
𝑞

𝑆𝑅(𝑞), 𝑞𝐹𝐵𝑃 ∈ argmax
𝑞

𝑆𝑃(𝑞).

The firm’s mark-up difference is

𝑟(𝛾) :=
(
𝑝𝑅(𝛾) − 𝑐(𝑞𝑅(𝛾))

)
−
(
𝑝𝑃(𝛾) − 𝑐(𝑞𝑃(𝛾))

)
,

so rich consumers’ IC is

𝑟(𝛾) ≤ 𝑆𝑅(𝑞𝑅(𝛾)) − 𝑆𝑅(𝑞𝑃(𝛾)). (41)

Using Lemma 3, we know that the regulator chooses (𝑞𝑅 , 𝑞𝑃 , 𝑟 , 𝑡 ,Π(𝛾)) to max-
imize ∫ 𝛾

𝛾
Φ(𝛾; 𝑞𝑅 , 𝑞𝑃 , 𝑟 , 𝑡 ,Π(𝛾)) 𝑑𝐺(𝛾),

where

Φ(𝛾; ·) = E[𝜔𝑖 | 𝛾]
[
𝛾𝑆𝑅(𝑞𝑅(𝛾)) + (1 − 𝛾)𝑆𝑃(𝑞𝑃(𝛾)) + 𝑡(𝛾)

]
(42)

−
(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
[
𝑆𝑅(𝑞𝑅(𝛾)) − 𝑆𝑃(𝑞𝑃(𝛾)) − 𝑟(𝛾)

]
−

(
E[𝜔𝑖 | 𝛾] − 𝜔𝐹

)
Π(𝛾) −

(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑟(𝛾) − 𝑘

(
𝑡(𝛾)

)
,
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subject to 𝑟 nondecreasing, (41), and firm IR

Π(𝛾) +
∫ 𝛾

𝛾
𝑟(𝛾′) 𝑑𝛾′ ≥ 0. (43)

I ignore the consumers’ IR constraints and the poor consumers’ IC constraint in
the analysis, but it is easy to check that they are satisfied in the solution that I
find.

Finally, define

𝛿(𝛾) :=
(
𝜔̄(𝛾) − 𝜔𝑅

)
𝛾 −

(
𝜔̄+(𝛾) − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) (44)

=𝛾(1 − 𝛾)(𝜔𝑃 − 𝜔𝑅) − (𝜔̄+(𝛾) − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾) . (45)

Lemma 6. From any feasible mechanism (𝑞𝑅 , 𝑞𝑃 , 𝑟 , 𝑡 ,Π(𝛾)) one can obtain another
feasible mechanism that weakly improves the regulator’s payoff and satisfies:

(a) 𝑘′(𝑡(𝛾)) = 𝜔̄(𝛾) for all 𝛾 ∈ Γ;

(b) 𝑞𝑅(𝛾) = 𝑞eff
𝑅

for all 𝛾 ∈ Γ;

(c) Π(𝛾) = 0 and 𝑟(𝛾) ≥ 0 for all 𝛾 ∈ Γ;

(d) There exists a cut-off 𝛾∗ ∈ [𝛾∗, 𝛾], where 𝛾∗ := inf{𝛾 ∈ [𝛾, 𝛾] : 𝛿(𝛾) ≥ 0} > 𝛾,
such that 𝑞𝑃(𝛾) = 𝑞eff

𝑃
and 𝑟(𝛾) = 0 for all 𝛾 ≤ 𝛾∗, whereas 𝑞𝑃(𝛾) ≤ 𝑞eff

𝑃
and

rich-IC binds (i.e. 𝑟(𝛾) = 𝑆𝑅(𝑞eff𝑅 ) − 𝑆𝑅(𝑞𝑃(𝛾))) for all 𝛾 > 𝛾∗.

Proof. Property (a). Consider a feasible mechanism with transfers 𝑡. Since 𝑡(𝛾)
enters the integrand (42) only through 𝜔̄(𝛾)𝑡(𝛾) − 𝑘(𝑡(𝛾)) and does not enter
the constraints, replacing 𝑡(𝛾) by 𝑡(𝛾) ∈ argmax𝑡∈R 𝜔̄(𝛾)𝑡 − 𝑘(𝑡) for all 𝛾 ∈ Γ

is feasible and strictly increases the objective if 𝑡(𝛾) ∉ argmax𝑡∈R 𝜔̄(𝛾)𝑡 − 𝑘(𝑡)
for a positive-measure subset of Γ. Since 𝑘 is continuously differentiable and
convex, with 𝑘′(0) ≤ 𝜔𝑅 and 𝑘′(𝑡) → ∞ as 𝑡 → ∞, there is a solution to problem
max𝑡∈R 𝜔̄(𝛾)𝑡 − 𝑘(𝑡) which satisfies the first-order condition 𝑘′(𝑡(𝛾)) = 𝜔̄(𝛾).

Property (b). The quality of the rich, 𝑞𝑅(𝛾), enters the integrand (42) only
through term 𝜔𝑅𝛾 𝑆𝑅(𝑞𝑅), where the coefficient is strictly positive. Therefore,
replacing 𝑞𝑅(𝛾) by efficient 𝑞eff

𝑅
for each 𝛾 strictly increases the integrand if

𝑞𝑅(𝛾) ≠ 𝑞eff
𝑅

and preserves feasibility: the IC constraint of the rich consumers,
(41), becomes slackened because 𝑆𝑅(𝑞𝑅) rises, and 𝑟 and its monotonicity are
unchanged. If in the original mechanism, 𝑞𝑅(𝛾) ≠ 𝑞eff

𝑅
for a positive-measure

subset of Γ, the objective strictly increases.
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Property (c). Here, take first any feasible mechanism that satisfies properties
(a)–(b) in the lemma. By feasibility, in this original mechanism, (43) is satisfied
and 𝑟 is non-decreasing in 𝛾. Hence there is a cut-off 𝛾̂ ∈ [𝛾, 𝛾] such that
𝑟(𝛾) < 0 for all 𝛾 < 𝛾̂ and 𝑟(𝛾) ≥ 0 for all 𝛾 > 𝛾̂. Modify the mechanism so that
in the new mechanism, the lowest firm type’s profit is

Π̃(𝛾) = 0,

and modified mark-up difference 𝑟 is introduced such that

𝑟(𝛾) :=

0, 𝛾 ≤ 𝛾̂,

𝑟(𝛾), 𝛾 > 𝛾̂,

without any changes to qualities and transfers 𝑡. In the new mechanism, the
monotonicity constraint, the firm’s IR constraint and the rich consumers’ IC con-
straints remain satisfied21. The pointwise value of the integrand (42) increases
for all 𝛾:

• The second line of (42) strictly increases for all 𝛾 < 𝛾̂ and weakly increases
for all 𝛾 ≥ 𝛾̂.

• The third line of (42) weakly increases for all 𝛾 ∈ Γ: the modified mech-
anism minimizes the profit of the firm with any demand 𝛾 ≤ 𝛾̂, and the
profit of every firm with demand 𝛾 > 𝛾̂ decreases by Π(𝛾̂) ≥ 0.

So, modifying the mechanism in this way improves the regulator’s payoff with-
out violating the constraints.

Property (d). Start from a mechanism satisfying (a)–(c). For each 𝛾, move
𝑞𝑃(𝛾) closer to 𝑞eff

𝑃
(keeping 𝑟(𝛾) fixed) until 𝑞𝑃(𝛾) = 𝑞eff

𝑃
or the rich consumers’

IC constraint binds. Because the coefficient of 𝑆𝑃(𝑞𝑃) in (42) is positive and 𝑆𝑃

is strictly concave, this weakly improves the objective and preserves feasibility.
After this step, for all 𝛾, either 𝑞𝑃(𝛾) = 𝑞𝐹𝐵

𝑃
, or the rich consumers’ IC constraint

holds as an equality.
Let

𝑟0 := 𝑆𝑅(𝑞eff𝑅 ) − 𝑆𝑅(𝑞eff𝑃 ) > 0, 𝛾̂ := inf{𝛾 : 𝑟(𝛾) > 0} ∈ [𝛾, 𝛾].

By monotonicity of 𝑟, we have 𝑟(𝛾) < 𝑟0 for all 𝛾 < 𝛾̂ and 𝑟(𝛾) ≥ 𝑟0 for all 𝛾 > 𝛾̂.
On [𝛾, 𝛾̂), we have 0 ≤ 𝑟(𝛾) < 𝑟0 and 𝑞𝑃(𝛾) = 𝑞eff

𝑃
.

21For the last claim, it is important that the original mechanism satisfies property (b) in the
lemma: 𝑞𝑅(𝛾) = 𝑞eff

𝑅
for all 𝛾 ∈ Γ.
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Consider the set of alternative mark-up difference schedules

𝑅̃ :=
{
𝑟 : [𝛾, 𝛾] → R+ : 𝑟 nondecreasing, 𝑟(𝛾) ∈ [0, 𝑟0] ∀𝛾 < 𝛾̂, 𝑟(𝛾) = 𝑟(𝛾) ∀𝛾 ≥ 𝛾̂

}
.

This set is nonempty, convex, and compact in 𝐿1 and contains 𝑟. Over 𝑅̃ the
objective (42) is affine in 𝑟. By Bauer’s maximum principle, the maximum is
attained at an extreme point of 𝑅̃, which is {0, 𝑟0}-valued on [𝛾, 𝛾̂) and hence of
the form

𝑟(𝛾) =


0, 𝛾 < 𝛾∗,

𝑟0, 𝛾 ∈ [𝛾∗, 𝛾̂),
𝑟(𝛾), 𝛾 ≥ 𝛾̂,

for some 𝛾∗ ∈ [𝛾, 𝛾̂]. After this step, the mechanism has a cut-off structure such
that 𝑞𝑃(𝛾) = 𝑞𝐹𝐵

𝑃
and 𝑟(𝛾) = 0 for all 𝛾 ≤ 𝛾∗, whereas 𝑞𝑃(𝛾) ≤ 𝑞eff

𝑃
and the rich

consumers’ IC binds for all 𝛾 > 𝛾∗.
Finally, since the coefficient of 𝑟(𝛾) in the integrand (42) is 𝛿(𝛾) < 0 for all

𝛾 < 𝛾∗ := inf{𝛾 : 𝛿(𝛾) ≥ 0}, choosing 𝑟(𝛾) = 0 for all 𝛾 < 𝛾∗ increases the
regulator’s objective relative to any without violating any constraints. Hence,
choosing 𝛾∗ ≥ 𝛾∗ improves the objective relative to any 𝛾∗ < 𝛾∗. Note that 𝛾∗ > 𝛾

by continuity of 𝛿 and 𝛿(𝛾) < 0. □

Lemma 7. In the class of feasible mechanisms satisfying Lemma 6(a)–(d), there exists
a mechanism that maximizes the regulator’s payoff.

Proof. By Lemma 6, the free choices are a cutoff 𝛾∗ ∈ [𝛾∗, 𝛾] and a non-increasing
schedule 𝑞𝑃 with 𝑞𝑃(𝛾) = 𝑞eff

𝑃
for 𝛾 ≤ 𝛾∗ and 𝑞𝑃(𝛾) ∈ [0, 𝑞eff

𝑃
] for 𝛾 > 𝛾∗. For a

fixed 𝛾∗ define

𝒬𝑃(𝛾∗) :=
{
𝑞𝑃 : [𝛾, 𝛾] → [0, 𝑞eff𝑃 ] non-increasing : 𝑞𝑃(𝛾) = 𝑞eff𝑃 ∀𝛾 ≤ 𝛾∗

}
.

𝒬𝑃(𝛾∗) is (sequentially) compact in 𝐿1 and nonempty. With 𝑡∗(𝛾) pinned down
by 𝑘′(𝑡∗(𝛾)) = 𝜔̄(𝛾), the regulator’s payoff reduces to

𝑊(𝑞𝑃 , 𝛾∗) :=
∫ 𝛾∗

𝛾

{
𝜔̄𝑖(𝛾)

(
𝛾𝑆𝑅(𝑞𝐹𝐵𝑅 ) + (1 − 𝛾)𝑆𝑃(𝑞𝐹𝐵𝑃 ) + 𝑡∗(𝛾)

)
− (𝜔̄𝑖(𝛾) − 𝜔𝑅)𝛾

(
𝑆𝑅(𝑞𝐹𝐵𝑅 ) − 𝑆𝑃(𝑞𝐹𝐵𝑃 )

)
− 𝑘

(
𝑡∗(𝛾)

)}
𝑑𝐺(𝛾)

+
∫ 𝛾

𝛾∗

{
𝜔̄𝑖(𝛾)

(
𝛾𝑆𝑅(𝑞𝐹𝐵𝑅 ) + (1 − 𝛾)𝑆𝑃(𝑞𝑃(𝛾)) + 𝑡∗(𝛾)

)
(46)

− (𝜔̄𝑖(𝛾) − 𝜔𝑅)𝛾
(
𝑆𝑅(𝑞𝑃(𝛾)) − 𝑆𝑃(𝑞𝑃(𝛾))

)
− (𝜔̄+(𝛾) − 𝜔𝐹)

1 − 𝐺(𝛾)
𝑔(𝛾)

(
𝑆𝑅(𝑞𝐹𝐵𝑅 ) − 𝑆𝑅(𝑞𝑃(𝛾))

)
− 𝑘

(
𝑡∗(𝛾)

)}
𝑑𝐺(𝛾),
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which is continuous in 𝑞𝑃 under 𝐿1 (the integrand is continuous in 𝑞𝑃(𝛾) and
dominated by integrable 𝜔̄𝑖(𝛾)

(
𝛾𝑆𝑅(𝑞𝐹𝐵𝑅 )+(1−𝛾)𝑆𝑃(𝑞𝐹𝐵𝑃 )+ 𝑡∗(𝛾)

)
− 𝑘(𝑡∗)). Hence,

for each fixed 𝛾∗,𝑊(·, 𝛾∗) attains a maximum on𝒬𝑃(𝛾∗) (Weierstrass). By Berge’s
maximum theorem, the regulator’s value function 𝛾∗ ↦→ max𝑞𝑃∈𝒬𝑃(𝛾∗)𝑊(𝑞𝑃 , 𝛾∗)
is continuous on the compact set [𝛾∗, 𝛾] and therefore attains its supremum. □

Lemma 8. In any optimal mechanism satisfying Lemma 6(a)–(d), the cut-off 𝛾∗ must
satisfy 𝛿(𝛾∗) = 0.

Proof. Let (𝑞𝑅 , 𝑞𝑃 , 𝑟 , 𝑡 ,Π(𝛾)) satisfying Lemma 6(a)–(d) be optimal with cut-off
𝛾∗. By Lemma 6(b)–(d),

𝑞𝑅(𝛾) = 𝑞eff𝑅 for all 𝛾, 𝑞𝑃(𝛾) = 𝑞eff𝑃 and 𝑟(𝛾) = 0 for all 𝛾 ≤ 𝛾∗,

and for 𝛾 > 𝛾∗ the rich–type IC binds so that

𝑟(𝛾) = 𝑆𝑅
(
𝑞eff𝑅

)
− 𝑆𝑅

(
𝑞𝑃(𝛾)

)
.

Recall
𝑟0 := 𝑆𝑅

(
𝑞eff𝑅

)
− 𝑆𝑅

(
𝑞eff𝑃

)
.

Using 𝑞𝑃(𝛾) ≤ 𝑞eff
𝑃

< 𝑞eff
𝑅

for 𝛾 > 𝛾∗, we have

𝑟(𝛾) = 𝑆𝑅
(
𝑞eff𝑅

)
− 𝑆𝑅

(
𝑞𝑃(𝛾)

)
≥ 𝑆𝑅

(
𝑞eff𝑅

)
− 𝑆𝑅

(
𝑞eff𝑃

)
= 𝑟0 (47)

for 𝛾 > 𝛾∗.
First, suppose by contradiction 𝛿(𝛾∗) > 0. For small 𝜀 > 0, define 𝑟(𝛾) = 𝑟(𝛾)

for 𝛾 ∉ [𝛾∗ − 𝜀, 𝛾∗) and 𝑟(𝛾) = 𝑟0 on [𝛾∗ − 𝜀, 𝛾∗).22 All the constraints remain
satisfied (in particular, 𝑟 is monotonic and satisfies (41)). The change in the
objective equals ∫ 𝛾∗

𝛾∗−𝜀
𝛿(𝛾) (𝑟0 − 0) 𝑑𝐺(𝛾) > 0

for 𝜀 small by continuity of 𝛿 and 𝛿(𝛾∗) > 0, contradicting optimality.
Second, suppose by contradiction 𝛿(𝛾∗) < 0. For small 𝜀 > 0, define 𝑟(𝛾) =

𝑟(𝛾) for 𝛾 ∉ [𝛾∗, 𝛾∗ + 𝜀) and 𝑟(𝛾) = 0 for 𝛾 ∈ [𝛾∗, 𝛾∗ + 𝜀).23 All the constraints
remain satisfied. The change in the objective equals

−
∫ 𝛾∗+𝜀

𝛾∗
𝛿(𝛾) 𝑟(𝛾) 𝑑𝐺(𝛾) > 0,

22For small enough 𝜀 > 0, 𝛾∗ − 𝜀 ∈ (𝛾, 𝛾), as we know 𝛾∗ > 𝛾.
23For small enough 𝜀 > 0, 𝛾∗ + 𝜀 ∈ (𝛾, 𝛾), since we must have 𝛾∗ < 𝛾 given that 𝛿(𝛾) = 0.
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for small 𝜀 by continuity of 𝛿 and 𝛿(𝛾∗) < 0, again contradicting optimality.
□

Lemma 9. In any optimal mechanism, for (almost) every 𝛾 ∈ [𝛾∗, 𝛾], either 𝑞𝑃(𝛾) is
locally constant, or it is strictly decreasing and satisfies

0 = 𝜔̄(𝛾)(1 − 𝛾)
[
𝜃𝑃𝑣

′(𝑞𝑃(𝛾)) − 𝑐′(𝑞𝑃(𝛾))
]
−
(
𝜔̄(𝛾) − 𝜔𝑅

)
𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞𝑃(𝛾))

+
(
𝜔̄(𝛾) − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾)

[
𝜃𝑅𝑣

′(𝑞𝑃(𝛾)) − 𝑐′(𝑞𝑃(𝛾))
]
. (48)

Proof. By Lemmas 6 and 7, we know that an optimal regulation mechanism
exists, satisfies properties (a)–(e) in Lemma 6 for almost every 𝛾 ∈ Γ, and
the regulator’s optimal payoff is given by (46). Optimality conditions for the
problem of choosing decreasing 𝑞𝑃 on (𝛾∗, 𝛾] are presented, e.g., in Hellwig
(2008). If the monotonicity constraint does not bind, optimality requires 𝑞𝑃(𝛾) to
satisfy the first-order condition (48) for almost every 𝛾 > 𝛾∗; if the monotonicity
constraint binds, 𝑞𝑃(𝛾) is locally constant.

□

Theorem 1 follows from simply combining Lemmas 6, 7, 8, and 9.

A.8 Proof of Remark 3

Proof. Fix any state 𝛾 ∈ (0, 1). Under laissez-faire (LF), the monopolist knows 𝛾

and chooses 𝑞𝐿𝐹
𝑅
(𝛾) = argmax 𝑆𝑅(𝑞) and either an interior poor quality 𝑞𝐿𝐹

𝑃
(𝛾) >

0 that solves
(1 − 𝛾)

(
𝜃𝑃𝑣

′(𝑞) − 𝑐′(𝑞)
)
= 𝛾(𝜃𝑅 − 𝜃𝑃) 𝑣′(𝑞), (49)

or the corner 𝑞𝐿𝐹
𝑃
(𝛾) = 0 if no interior solution exists. The LF solution is down-

ward distorted relative to the poor’s efficient quality 𝑞eff
𝑃

= argmax𝑞 𝑆𝑃(𝑞), i.e.
𝑞𝐿𝐹
𝑃
(𝛾) < 𝑞eff

𝑃
, and 𝑞𝐿𝐹

𝑃
(𝛾) is (weakly) decreasing in 𝛾.

Consider the optimal regulation mechanism (𝑞★
𝑃
, 𝑝★

𝑃
, 𝑞★

𝑅
, 𝑝★

𝑅
, 𝑡★). For 𝛾 ≤ 𝛾∗

(cost-plus region), 𝑞★
𝑃
(𝛾) = 𝑞eff

𝑃
≥ 𝑞𝐿𝐹

𝑃
(𝛾) by the previous observation. It remains

to compare the two for 𝛾 > 𝛾∗ (baseline region).
From Theorem 1(iii), when 𝑞★

𝑃
(𝛾) is strictly decreasing, it satisfies

E[𝜔𝑖 | 𝛾](1 − 𝛾)𝑆′
𝑃(𝑞) −

(
E[𝜔𝑖 | 𝛾] − 𝜔𝑅

)
𝛾
(
𝑆′
𝑅(𝑞) − 𝑆′

𝑃(𝑞)
)

(50)

+
(
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) 𝑆′

𝑅(𝑞) = 0, (51)

that is,

(1 − 𝛾)
(
𝜃𝑃𝑣

′(𝑞) − 𝑐′(𝑞)
)
− E[𝜔𝑖 | 𝛾] − 𝜔𝑅

E[𝜔𝑖 | 𝛾]
𝛾(𝜃𝑅 − 𝜃𝑃) 𝑣′(𝑞) (52)
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+ E[𝜔𝑖 | 𝛾′ ≥ 𝛾] − 𝜔𝐹

E[𝜔𝑖 | 𝛾]
1 − 𝐺(𝛾)
𝑔(𝛾) (𝜆𝑅𝑣

′(𝑞) − 𝑐′(𝑞)) = 0, (53)

Since E[𝜔𝑖 |𝛾]−𝜔𝑅

E[𝜔𝑖 |𝛾] < 1 and 𝑞★
𝑃
(𝛾) ≤ 𝑞𝐹𝐵

𝑃
< 𝑞𝐹𝐵

𝑅
, it is straightforward that a solution

to (49) is greater than a solution to (52).
If 𝑞★

𝑃
(𝛾) is constant on an interval [𝛾𝑎 , 𝛾𝑏] (ironing or 𝑞★

𝑃
(𝛾) ≡ 0), then by

Theorem 1(iii) and continuity the interior FOC holds at 𝛾𝑎 , hence 𝑞★
𝑃
(𝛾𝑎) ≥

𝑞𝐿𝐹
𝑃
(𝛾𝑎). Because 𝑞★

𝑃
(·) is weakly decreasing in 𝛾 on the baseline region and

𝑞𝐿𝐹
𝑃
(·) is weakly decreasing in 𝛾 by (49), for every 𝛾 ∈ [𝛾𝑎 , 𝛾𝑏],

𝑞★𝑃(𝛾) = 𝑞★𝑃(𝛾𝑎) ≥ 𝑞𝐿𝐹𝑃 (𝛾𝑎) ≥ 𝑞𝐿𝐹𝑃 (𝛾).

This completes the comparison in all cases. □

A.9 Proof of Remark 4

I will first prove a helpful lemma.

Lemma 10. In the optimal regulation mechanism of Theorem 1, 𝑢𝑃(𝛾) − 𝑡(𝛾) is weakly
increasing in 𝛾 on [𝛾, 𝛾].

Proof. On [𝛾, 𝛾∗] (cost–plus region), 𝑞𝑃(𝛾) = argmax𝑞 𝑆𝑃(𝑞) and 𝑟(𝛾) ≡ 0, so

𝑢𝑃(𝛾) − 𝑡(𝛾) = 𝜃𝑃𝑣
(
𝑞𝑃(𝛾)

)
− 𝑝𝑃(𝛾) − 𝑡(𝛾) = 𝑆𝑃

(
𝑞𝑃(𝛾)

)
is constant. It remains to show weak monotonicity on [𝛾∗, 𝛾].

For 𝛾 > 𝛾∗, rich IC binds against the poor option, hence

𝑢𝑅(𝛾) − 𝑢𝑃(𝛾) =
(
𝜃𝑅 − 𝜃𝑃

)
𝑣
(
𝑞𝑃(𝛾)

)
= 𝑆𝑅

(
𝑞𝑃(𝛾)

)
− 𝑆𝑃

(
𝑞𝑃(𝛾)

)
.

Substituting this into the resource constraint

𝛾𝑆𝑅
(
𝑞𝑅(𝛾)

)
+ (1 − 𝛾)𝑆𝑃

(
𝑞𝑃(𝛾)

)
+ 𝑡(𝛾) = (1 − 𝛾)𝑢𝑃(𝛾) + 𝛾𝑢𝑅(𝛾) +Π(𝛾),

we obtain

𝑢𝑃(𝛾)− 𝑡(𝛾) = 𝛾𝑆𝑅
(
𝑞𝑅(𝛾)

)
+(1−𝛾)𝑆𝑃

(
𝑞𝑃(𝛾)

)
−𝛾

(
𝑆𝑅

(
𝑞𝑃(𝛾)

)
−𝑆𝑃

(
𝑞𝑃(𝛾)

) )
−Π(𝛾).

(54)
For almost all 𝛾 ≥ 𝛾∗, Π′(𝛾) = 𝑟(𝛾) with 𝑟(𝛾) = 𝑆𝑅

(
𝑞𝑅(𝛾)

)
− 𝑆𝑅

(
𝑞𝑃(𝛾)

)
, and

𝑞𝑅(𝛾) is constant in 𝛾. Differentiating (54) at such 𝛾’s gives(
𝑢𝑃(𝛾) − 𝑡(𝛾)

) ′
=
[
(1 − 𝛾)𝑆′

𝑃(𝑞𝑃(𝛾)) − 𝛾
(
𝑆′
𝑅(𝑞𝑃(𝛾)) − 𝑆′

𝑃(𝑞𝑃(𝛾))
) ]

· 𝑞′𝑃(𝛾).

By Theorem 1(iii), 𝑞𝑃(·) is weakly decreasing on [𝛾∗, 𝛾], so 𝑞′
𝑃
(𝛾) ≤ 0. By

Remark 3, 𝑞𝑃(𝛾) ≥ 𝑞𝐿𝐹
𝑃
(𝛾) for all 𝛾, which is equivalent to

(1 − 𝛾)𝑆′
𝑃

(
𝑞𝑃(𝛾)

)
− 𝛾

(
𝑆′
𝑅

(
𝑞𝑃(𝛾)

)
− 𝑆′

𝑃

(
𝑞𝑃(𝛾)

) )
≤ 0.
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Therefore 𝑢′
𝑃
(𝛾) − 𝑡′(𝛾) ≥ 0, finalizing the proof. □

Let us then prove the actual remark.
Remark 4. Baseline regulation options admit a simple implementation: for each 𝛾 in

the region 𝛾 > 𝛾∗, it suffices to mandate that the firm includes the option
(
𝑞𝑃(𝛾), 𝑝𝑃(𝛾)

)
in its menu and receives the transfer 𝑡(𝛾). No further menu restrictions are required.

Proof. Fix the optimal mechanism of Theorem 1, (𝑞★
𝑃
, 𝑝★

𝑃
, 𝑞★

𝑅
, 𝑝★

𝑅
, 𝑡★) and its sim-

ple implementation: the baseline regulation option designed for any 𝛾 > 𝛾∗

only requires the firm to include the option (𝑞★
𝑃
(𝛾), 𝑝★

𝑃
(𝛾)) in its menu and is

associated with transfer 𝑡★(𝛾); otherwise the firm’s menu is unrestricted.
Let us consider the incentives of a firm with true state 𝛾 choosing the simple-

implementation option for 𝛾′ > 𝛾∗. Given that the firm chooses this option, it
faces the problem of choosing (𝑞𝑃(𝛾′), 𝑝𝑃(𝛾′), 𝑞𝑅(𝛾′), 𝑝𝑅(𝛾′)) to maximize its
profit to maximize

𝛾
(
𝑝𝑅(𝛾′) − 𝑐(𝑞𝑅(𝛾′))

)
+ (1 − 𝛾)

(
𝑝𝑃(𝛾′) − 𝑐(𝑞𝑃(𝛾′))

)
+ 𝑡★(𝛾′) (55)

subject to the constraint that both the rich and the poor obtain at least the utility
they obtain from the mandated option:

𝜃𝑅𝑣(𝑞𝑅(𝛾′)) − 𝑝𝑅(𝛾′) ≥ 𝜃𝑅𝑣(𝑞★𝑃(𝛾′)) − 𝑝★𝑃(𝛾′), (56)

𝜃𝑃𝑣(𝑞𝑃(𝛾′)) − 𝑝𝑃(𝛾′) ≥ 𝜃𝑃𝑣(𝑞★𝑃(𝛾′)) − 𝑝★𝑃(𝛾′). (57)

and the rich IC constraint

𝜃𝑅𝑣(𝑞𝑅(𝛾′)) − 𝑝𝑅(𝛾′) ≥ 𝜃𝑅𝑣(𝑞𝑃(𝛾′)) − 𝑝𝑃(𝛾′). (58)

In this problem, (57) must bind (otherwise the firm would want to increase
𝑝𝑃(𝛾′)), and either (56) or (58) must bind (otherwise the firm would want to
increase 𝑝𝑅(𝛾′)).

If 𝑞𝑃(𝛾′) > 𝑞★
𝑃
(𝛾′), then (58) binds and (56) does not, and the marginal benefit

from increasing 𝑞𝑃(𝛾′) is

(1 − 𝛾)
(
𝜃𝑃𝑣

′(𝑞𝑃(𝛾′)) − 𝑐′(𝑞𝑃(𝛾′))
)
− 𝛾(𝜃𝑅 − 𝜃𝑃)𝑣′(𝑞𝑃(𝛾′)). (59)

which is negative if 𝑞𝑃(𝛾′) > 𝑞𝐿𝐹
𝑃
(𝛾) and positive if 𝑞𝑃(𝛾′) < 𝑞𝐿𝐹

𝑃
(𝛾) (where 𝑞𝐿𝐹

𝑃

corresponds to the quality that the laissez-faire monopolist assigns to the poor).
On the other hand, if 𝑞𝑃(𝛾′) < 𝑞★

𝑃
(𝛾′), then (56) binds and (58) does not, and

the marginal benefit from increasing 𝑞𝑃(𝛾′) is

(1 − 𝛾)
(
𝜃𝑃𝑣

′
𝑃(𝑞𝑃(𝛾′)) − 𝑐′𝑃(𝑞𝑃(𝛾′))

)
which is positive when 𝑞𝑃(𝛾′) < 𝑞★

𝑃
(𝛾′) ≤ 𝑞𝐹𝐵

𝑃
, so it is profitable to increase 𝑞𝑃 .
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Hence:

(i) If 𝑞𝐿𝐹
𝑃
(𝛾) ≤ 𝑞★

𝑃
(𝛾′), the deviator allocates the mandate 𝑞★

𝑃
(𝛾′) to the poor.

(ii) If 𝑞𝐿𝐹
𝑃
(𝛾) > 𝑞★

𝑃
(𝛾′), the deviator allocates the laissez-faire quality 𝑞𝐿𝐹

𝑃
(𝛾) to

the poor and chooses 𝑝𝑃(𝛾′) to keep the constraint (57) binding.

Because 𝑞★
𝑃
(·) is weakly decreasing on (𝛾∗, 𝛾] (Theorem 1(iii)), the inequality

𝑞𝐿𝐹
𝑃
(𝛾) ≶ 𝑞★

𝑃
(𝛾′) defines a cutoff 𝛾̂(𝛾) ∈ [𝛾∗, 𝛾] so that

• For 𝛾′ ∈ [𝛾∗, 𝛾̂(𝛾)] we have case (i),

• For 𝛾′ > 𝛾̂(𝛾) we have case (ii).

For 𝛾′ ≤ 𝛾̂(𝛾), the deviator’s best response coincides with the mandated
poor option, so the induced menu equals the intended 𝛾′-menu; standard
single-crossing across states then implies no profitable deviation within this
region (already shown in Lemma 2).

For 𝛾′ > 𝛾̂(𝛾), substituting 𝑞𝑃(𝛾′) = 𝑞𝐿𝐹
𝑃
(𝛾), the deviator’s payoff simplifies

to
Π𝐿𝐹(𝛾) − 𝑢★𝑃(𝛾′) + 𝑡(𝛾′)

where Π𝐿𝐹(𝛾) is the laisse-faire profit (note that the firm must provide the poor
with utility 𝑢★

𝑃
(𝛾′) according to constraint (57)). Since 𝑢★

𝑃
(𝛾′)− 𝑡(𝛾′) is increasing

in 𝛾′ by Lemma 10, the deviation payoff is decreasing in 𝛾′, and the result that
the firm does not want to deviate to any option 𝛾′ follows. □

A.10 Proof of Remark 5

Proof. Let us first prove that the price gap 𝑝𝑅(𝛾) − 𝑝𝑃(𝛾) is monotonic. For
𝛾 ≤ 𝛾∗, Theorem 1 gives cost-plus regulation, hence

𝑝𝑅(𝛾) − 𝑝𝑃(𝛾) = 𝑐
(
𝑞eff𝑅

)
− 𝑐

(
𝑞eff𝑃

)
.

For 𝛾 > 𝛾∗, the rich consumers’ IC constraint binds, so

𝑝𝑅(𝛾) − 𝑝𝑃(𝛾) = 𝜃𝑅

(
𝑣
(
𝑞eff𝑅

)
− 𝑣

(
𝑞𝑃(𝛾)

) )
.

Since 𝑞𝑃(·) is decreasing on (𝛾∗, 𝛾] and 𝑣 is strictly increasing, the right-hand
side is increasing in 𝛾 on (𝛾∗, 𝛾]. Furthermore, for any 𝑞𝑃(𝛾) ≤ 𝑞eff

𝑃
, we have

𝑐
(
𝑞eff𝑅

)
− 𝑐

(
𝑞eff𝑃

)
<< 𝜃𝑅

(
𝑣
(
𝑞eff𝑅

)
− 𝑣

(
𝑞𝑃(𝛾)

) )
,

because 𝑆𝑅(𝑞eff𝑅 ) >> 𝑆𝑅(𝑞eff𝑃 ) ≥ 𝜃𝑅𝑣
(
𝑞𝑃(𝛾)

)
− 𝑐

(
𝑞eff
𝑃

)
. Hence, there is an upward

jump in the price gap at 𝛾∗.
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Let us then prove that under an ex-post budget balance requirement for
the regulator, 𝑡(𝛾) = 0 for all 𝛾 ∈ Γ, 𝑝𝑃(·) is weakly decreasing for all 𝛾 ∈ Γ.
By contradiction, if 𝑝𝑃(𝛾′′) > 𝑝𝑃(𝛾′) for some 𝛾′′ > 𝛾′, then we have by the
first proposition also 𝑝𝑅(𝛾′′) > 𝑝𝑅(𝛾′), and furthermore by Theorem 1 also
𝑐(𝑞𝑃(𝛾′′)) ≤ 𝑐(𝑞𝑃(𝛾′)). Therefore, it cannot be incentive-compatible for any firm
to choose the menu designed for firm 𝛾′. □

A.11 Proof of Remark 6

Proof. From E[𝜔𝑖] = E[𝛾]𝜔𝑅 + (1 − E[𝛾])𝜔𝑃 , we obtain:

𝜔𝑅 = E[𝜔𝑖] − (1 − E[𝛾′])(𝜔𝑃 − 𝜔𝑅), 𝜔𝑃 = E[𝜔𝑖] + E[𝛾′](𝜔𝑃 − 𝜔𝑅),

and therefore,

E[𝜔𝑖 | 𝛾] = E[𝜔𝑖] + (E[𝛾′] − 𝛾) (𝜔𝑃 − 𝜔𝑅),
E[𝜔𝑖 | 𝛾′ ≥ 𝛾] = E[𝜔𝑖] +

(
E[𝛾′] − E[𝛾′ | 𝛾′ ≥ 𝛾]

)
(𝜔𝑃 − 𝜔𝑅). (60)

Then

𝛿(𝛾) = (𝜔𝑃−𝜔𝑅)
[
𝛾(1−𝛾)+

(
E[𝛾′ | 𝛾′ ≥ 𝛾]−E[𝛾′]

) 1 − 𝐺(𝛾)
𝑔(𝛾)

]
−
(
E[𝜔𝑖]−𝜔𝐹

) 1 − 𝐺(𝛾)
𝑔(𝛾) ,

so holding E[𝜔𝑖] fixed, increasing (decreasing) the spread 𝜔𝑃 − 𝜔𝑅 strictly in-
creases (strictly decreases) 𝛿(𝛾) for all 𝛾 ∈ (𝛾, 𝛾). Similarly, increasing (decreas-
ing) 𝜔𝐹 strictly increases (strictly decreases) 𝛿(𝛾) for all 𝛾 ∈ (𝛾, 𝛾).

Now, given an increase in spread 𝜔𝑃 − 𝜔𝑅 or in 𝜔𝐹, let 𝛿𝑎 and 𝛿𝑏 be the
pre- and post-change function, so that 𝛿𝑏(𝛾) > 𝛿𝑎(𝛾) for all 𝛾 ∈ (𝛾, 𝛾) by the
earlier observation. Suppose by contradiction that after the change, an optimal
mechanism has a higher cut-off than before: 𝛾∗

𝑏
> 𝛾∗

𝑎 . Therefore, in the pre-
change mechanism, 𝑟𝑎(𝛾) ≥ 𝑟0 for all 𝛾 ∈ (𝛾∗

𝑎 , 𝛾
∗
𝑏
), and in the post-change

mechanism, 𝑟𝑏(𝛾) = 0 for all 𝛾 ∈ (𝛾∗
𝑎 , 𝛾

∗
𝑏
).24 Since the pre-change mechanism

is optimal, decreasing 𝑟 by 𝑟0 on (𝛾∗
𝑎 , 𝛾

∗
𝑏
), without any changes in the quality

allocation, can’t strictly increase the regulator’s payoff as such a change would
not violate the constraints. Therefore,

0 ≤𝑟0
∫ 𝛾∗

𝑏

𝛾∗
𝑎

𝛿𝑎(𝛾)𝑑𝛾 < 𝑟0

∫ 𝛾∗
𝑏

𝛾∗
𝑎

𝛿𝑏(𝛾)𝑑𝛾 (61)

where the strict inequality follows since 𝛿𝑏(𝛾) > 𝛿𝑎(𝛾) for all 𝛾 ∈ (𝛾∗
𝑎 , 𝛾

∗
𝑏
). This

implies that in the post-change mechanism, increasing 𝑟 from 0 to 𝑟0 on (𝛾∗
𝑎 , 𝛾

∗
𝑏
]

increases the regulator’s payoff, and as it is also feasible, this contradicts the

24Recall that 𝑟0 := 𝑆𝑅(𝑞eff𝑅 ) − 𝑆𝑅(𝑞eff𝑃 ) > 0.
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optimality of the post-change mechanism.
The analysis regarding a decrease in spread 𝜔𝑃 − 𝜔𝑅 or in 𝜔𝐹 is completely

analogous.
□

A.12 Proof of Proposition 2

Lemma 11. Fix the environment of the text; in particular, suppose that 𝐹𝑅 strictly
first-order stochastically dominates 𝐹𝑃 : 𝐹𝑅(𝜃) < 𝐹𝑃(𝜃) for all 𝜃 ∈ (𝜃, 𝜃). Then for
every 𝜃 ∈ (𝜃, 𝜃),

E[𝜔𝑖 | 𝛾] > E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾].

Proof. The expected weight 𝜔𝑖 conditional on 𝛾 only can be written as

E[𝜔𝑖 | 𝛾] = 𝛾 𝜔𝑅 + (1 − 𝛾)𝜔𝑃

while the expected weight 𝜔𝑖 conditional on both 𝛾 and event 𝜃′ ≥ 𝜃 can be
written as

E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾] = 𝜔𝑅𝛾 [1 − 𝐹𝑅(𝜃)] + 𝜔𝑃(1 − 𝛾) [1 − 𝐹𝑃(𝜃)]
𝛾 [1 − 𝐹𝑅(𝜃)] + (1 − 𝛾) [1 − 𝐹𝑃(𝜃)]

So we get:

E[𝜔𝑖 | 𝛾] − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾] (62)

=

(
𝛾 [1 − 𝐹𝑅] + (1 − 𝛾) [1 − 𝐹𝑃]

)
E[𝜔𝑖 | 𝛾] − 𝜔𝑅𝛾 [1 − 𝐹𝑅] − 𝜔𝑃(1 − 𝛾) [1 − 𝐹𝑃]

𝛾 [1 − 𝐹𝑅] + (1 − 𝛾) [1 − 𝐹𝑃]
(63)

=
𝛾(1 − 𝛾) (𝐹𝑃(𝜃) − 𝐹𝑅(𝜃)) (𝜔𝑃 − 𝜔𝑅)

𝛾 [1 − 𝐹𝑅] + (1 − 𝛾) [1 − 𝐹𝑃]
, (64)

which is positive for all 𝜃 ∈ (𝜃, 𝜃) by the FOSD property and 𝜔𝑃 > 𝜔𝑅. □

Lemma 12. In the continuous-WTP environment of Section 3.3, if the share of rich
consumers 𝛾 ∈ (0, 1) is known to the regulator, then in any optimal regulation mech-
anism, the qualities are strictly distorted downward relative to the efficient benchmark:
for almost all 𝜃 ∈ (𝜃, 𝜃),

𝑞(𝜃, 𝛾) < argmax
𝑞

𝑆(𝑞, 𝜃)

and the price mark-up 𝑝(𝑞(𝜃)) − 𝑐(𝑞(𝜃)) is increasing in 𝜃 and strictly increasing in
quality 𝑞(𝜃).

Proof. Since the firm has no private information, for a given value of 𝛾, the
regulator can just choose quality allocation 𝑞 : Θ → 𝒬 and price allocation
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𝑝 : Θ → R and the transfer 𝑡 ∈ R to the firm to maximize∫ 𝜃

𝜃
E[𝜔𝑖 | 𝜃, 𝛾](𝜃𝑣(𝑞(𝜃)) − 𝑝(𝜃))𝑑𝐹(𝜃 | 𝛾) − 𝑘(𝑡) (65)

𝜔𝐹

(
𝑡 +

∫ 𝜃

𝜃
(𝑝(𝜃) − 𝑐(𝑞(𝜃)))𝑑𝐹(𝜃 | 𝛾)

)
(66)

(where the first line has the consumers’ weighted payoffs and the cost of the
regulator’s spending, and the second line has the firm’s weighted profit), subject
to the firm’s IR constraint

𝑡 +
∫ 𝜃

𝜃
(𝑝(𝜃) − 𝑐(𝑞(𝜃)))𝑑𝐹(𝜃 | 𝛾) ≥ 0, (67)

the consumers’ IC constraints

𝜃𝑣(𝑞(𝜃)) − 𝑝(𝜃) ∈ argmax
𝜃′

𝜃𝑣(𝑞(𝜃′)) − 𝑝(𝜃′)

for all 𝜃, and the consumers’ IR constraints

𝜃𝑣(𝑞(𝜃)) − 𝑝(𝜃) ≥ 0

for all 𝜃.
The firm’s IR constraint (17) binds in the solution as otherwise all prices

could be decreased by small 𝑑𝑝 > 0 without violating any constraint, which
would increase the regulator’s payoff by (E[𝜔𝑖 | 𝛾] − 𝜔𝐹)𝑑𝑝, which is positive
by assumption.

Furthermore, a standard Myersonian result implies that incentive-compatibility
is equivalent with 𝑞 being non-decreasing and envelope condition

𝑝(𝜃) = 𝜃𝑣(𝑞(𝜃)) −
∫ 𝜃

𝜃
𝑣(𝑞(𝑧))𝑑𝑧 − 𝑢. (68)

being satisfied for all 𝜃 and some constant 𝑢.
Using the binding firm’s IR constraint and (68), we can then write the regu-

lator’s payoff as a function of the allocation:∫ 𝜃

𝜃

{
𝜔̄𝑖(𝛾)

[
𝜃𝑣(𝑞(𝜃)) − 𝑐(𝑞(𝜃)) + 𝑡

]
− 𝑘(𝑡) (69)

− (𝜔̄𝑖(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾])𝑣(𝑞(𝜃))1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾)

}
𝑑𝐹(𝜃 | 𝛾),

where 𝜔̄𝑖(𝛾) := E[𝜔𝑖 | 𝛾] as before. The regulation problem is to choose non-
decreasing allocation 𝑞 and transfer 𝑡 ∈ R to maximize (69).

Given the properties of function 𝑘, there is an optimal 𝑡 which solves 𝑘′(𝑡) =
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𝜔̄𝑖(𝛾) and satisfies 𝑡 > 0.
At almost every 𝜃 ∈ Θ where optimal 𝑞(𝜃) is strictly increasing, it should

solve the pointwise first-order condition

0 = 𝜔̄𝑖(𝛾)
[
𝜃𝑣′(𝑞(𝜃)) − 𝑐′(𝑞(𝜃))

]
− (𝜔̄𝑖(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾])1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾)︸                                             ︷︷                                             ︸
𝐵

𝑣′(𝑞(𝜃)).

(70)

Lemma 11 implies that expression 𝐵 in (70) is positive for all 𝜃 ∈ (𝜃, 𝜃), and
therefore quality 𝑞(𝜃) that solves the pointwise FOC (70) is strictly lower than
the efficient quality 𝑞𝐹𝐵(𝜃) for which 𝜃𝑣′(𝑞𝐹𝐵(𝜃)) − 𝑐′(𝑞𝐹𝐵(𝜃)) = 0.

Then if in the optimal solution, 𝑞(𝜃) ≥ 𝑞𝐹𝐵(𝜃) for some 𝜃 ∈ (𝜃, 𝜃), it must
be because the monotonicity constraint binds locally and hence 𝑞 is constant
around 𝜃 for some interval [𝜃𝑎 , 𝜃𝑏] such that 𝜃 ∈ [𝜃𝑎 , 𝜃𝑏]. But since the optimal
allocation is continuous, the FOC (70) should hold at 𝜃 = 𝜃𝑎 , implying 𝑞(𝜃𝑎) <
𝑞𝐹𝐵(𝜃𝑎) which is a contradiction with 𝑞𝐹𝐵(𝜃𝑎) < 𝑞𝐹𝐵(𝜃) ≤ 𝑞(𝜃) = 𝑞(𝜃𝑎). This
proves the result that for almost all 𝜃 ∈ (𝜃, 𝜃),

𝑞(𝜃, 𝛾) < argmax
𝑞

𝑆(𝑞, 𝜃).

Finally, let me prove the monotonicity of the mark-up 𝑝(𝑞(𝜃)) − 𝑐(𝑞(𝜃)). We
have

𝑝(𝑞(𝜃)) − 𝑐(𝑞(𝜃)) = 𝜃𝑣(𝑞(𝜃)) −
∫ 𝜃

𝜃
𝑣(𝑞(𝑧))𝑑𝑧 − 𝑐(𝑞(𝜃)). (71)

Note that 𝑞 is absolutely continuous and hence almost everywhere differentiable,
and at any point of differentiability, we have by (71),

(𝑝′(𝑞(𝜃)) − 𝑐′(𝑞(𝜃)))𝑞′(𝜃) = 𝑞′(𝜃)(𝜃𝑣′(𝑞(𝜃)) − 𝑐′(𝑞(𝜃))) (72)

Derivative (72) is non-negative as by incentive compatibility, 𝑞′(𝜃) ≥ 0, and
since 𝑞(𝜃) < 𝑞𝐹𝐵(𝜃), 𝜃𝑣′(𝑞(𝜃)) − 𝑐′(𝑞(𝜃)) > 0. Integrating then yields that for all
𝜃′ > 𝜃,

𝑝(𝑞(𝜃′)) − 𝑐(𝑞(𝜃′)) ≥ 𝑝(𝑞(𝜃)) − 𝑐(𝑞(𝜃)),

with strict inequality if 𝑞(𝜃′) > 𝑞(𝜃).
□

Lemma 12 proves part (i) of Proposition 2.
Let us then proceed to part (ii) to study the regulator’s problem of designing

the regulation mechanism when 𝛾 is privately known to the firm.
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The firm’s profit is

Π(𝛾) =
∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾)))𝑑𝐹(𝜃 | 𝛾) (73)

=

∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾)))(𝛾 𝑓𝑅(𝜃) + (1 − 𝛾) 𝑓𝑃(𝜃))𝑑𝜃 (74)

=

∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾))) 𝑓𝑃(𝜃))𝑑𝜃 (75)

+ 𝛾

∫ 𝜃

𝜃
(𝑝(𝜃, 𝛾) − 𝑐(𝑞(𝜃, 𝛾)))( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃))𝑑𝜃 (76)

=

∫ 𝜃

𝜃
((𝜃 − 1 − 𝐹𝑃(𝜃)

𝑓𝑃(𝜃)
)𝑣(𝑞(𝜃, 𝛾)) − 𝑐(𝑞(𝜃, 𝛾)))𝑑𝐹𝑃(𝜃)) (77)

+ 𝛾

∫ 𝜃

𝜃
(𝜃𝑣(𝑞(𝜃, 𝛾)) − 𝑐(𝑞(𝜃, 𝛾)))( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)) + (𝐹𝑅(𝜃) − 𝐹𝑃(𝜃))𝑣(𝑞(𝜃, 𝛾))𝑑𝜃︸                                                                                                ︷︷                                                                                                ︸

:=𝑅(𝑞(·,𝛾))

,

(78)

where the final equality uses consumers’ IC condition, and I introduce notation
𝑅(𝑞). By a standard Myersonian result, incentive compatibility for the firm is
equivalent with 𝑅 being non-decreasing in 𝛾 and

Π(𝛾) = Π(𝛾) +
∫ 𝛾

𝛾
𝑅(𝛾′)𝑑𝛾′,

and consumer incentive compatibility further requires that 𝑞 is non-decreasing
in 𝜃.

Using similar techniques as before, the regulator’s payoff can again be written
as ∫ 𝛾

𝛾

{ ∫ 𝜃

𝜃

[
𝜔̄𝑖(𝛾)

[
𝜃𝑣(𝑞(𝜃, 𝛾)) − 𝑐(𝑞(𝜃, 𝛾)) + 𝑡(𝛾)

]
− (𝜔̄𝑖(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾])𝑣(𝑞(𝜃, 𝛾))1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾)

]
𝑑𝐹(𝜃 | 𝛾) (79)

− (𝜔̄(𝛾) − 𝜔𝐹)Π(𝛾) − (𝜔̄+(𝛾) − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾) 𝑅(𝑞(·, 𝛾)) − 𝑘(𝑡(𝛾))

}
𝑑𝐺(𝛾),

and the regulator chooses an allocation 𝑞 : Θ × Γ and Π(𝛾) to maximize (79)
subject to the constraint that 𝑞 is non-decreasing in 𝜃 and 𝑅 is non-decreasing
in 𝛾, and the firm’s IR constraint is satisfied: Π(𝛾) +

∫ 𝛾

𝛾
𝑅(𝛾′)𝑑𝛾′ ≥ 0 for all 𝛾.
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Lemma 13. Denote

𝑊(𝛾, 𝑞) :=
∫ 𝜃

𝜃

[
𝜔̄𝑖(𝛾)

[
𝜃𝑣(𝑞(𝜃, 𝛾)) − 𝑐(𝑞(𝜃, 𝛾))

]
− (𝜔̄𝑖(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾])𝑣(𝑞(𝜃, 𝛾))1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾)

]
𝑑𝐹(𝜃 | 𝛾), (80)

Then 𝑅(𝛾, 𝑞) < 0 implies 𝑊(𝛾, 𝑞) ≤ 𝑊(𝛾, 𝑞𝐹𝐵).

Proof. Note that 𝐹(𝜃) = 𝛾𝐹𝑅(𝜃) + (1 − 𝛾)𝐹𝑃(𝜃) and

E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾] = 𝜔𝑅𝛾 [1 − 𝐹𝑅(𝜃)] + 𝜔𝑃(1 − 𝛾) [1 − 𝐹𝑃(𝜃)]
𝛾 [1 − 𝐹𝑅(𝜃)] + (1 − 𝛾) [1 − 𝐹𝑃(𝜃)]

.

Therefore, we can write

𝑊(𝛾, 𝑞) =
∫ 𝜃

𝜃
𝜔̄(𝛾) 𝑆(𝑞(𝜃, 𝛾), 𝜃) 𝑓 (𝜃 | 𝛾) 𝑑𝜃−(𝜔𝑃−𝜔𝑅) 𝛾(1−𝛾)

∫ 𝜃

𝜃
(𝐹𝑃−𝐹𝑅) 𝑣(𝑞) 𝑑𝜃.

Furthermore,

𝑊(𝛾, 𝑞) −𝑊(𝛾, 𝑞eff) = 𝜔̄(𝛾)
∫ 𝜃

𝜃
(𝑆(𝑞(𝜃), 𝜃) − 𝑆(𝑞𝐹𝐵(𝜃), 𝜃)) 𝑓 (𝜃 | 𝛾) 𝑑𝜃 (81)

−(𝜔𝑃 − 𝜔𝑅) 𝛾(1 − 𝛾)
∫ 𝜃

𝜃
(𝐹𝑃 − 𝐹𝑅)

(
𝑣(𝑞(𝜃)) − 𝑣(𝑞𝐹𝐵(𝜃))

)
𝑑𝜃.

Note that∫ 𝜃

𝜃
(𝐹𝑃−𝐹𝑅)

(
𝑣(𝑞(𝜃))−𝑣(𝑞𝐹𝐵(𝜃))

)
𝑑𝜃 =

∫ 𝜃

𝜃
(𝑆(𝑞(𝜃), 𝜃)−𝑆(𝑞𝐹𝐵(𝜃), 𝜃))( 𝑓𝑅(𝜃)− 𝑓𝑃(𝜃))𝑑𝜃−𝑅(𝛾, 𝑞)

and substitute this to (81) to obtain

𝑊(𝛾, 𝑞) −𝑊(𝛾, 𝑞eff) = 𝛾𝜔𝑅

∫ 𝜃

𝜃
[𝑆(𝑞(𝜃), 𝜃) − 𝑆(𝑞𝐹𝐵(𝜃), 𝜃)]𝑑𝐹𝑅(𝜃) (82)

+ (1 − 𝛾)𝜔𝑃

∫ 𝜃

𝜃
[𝑆(𝑞(𝜃), 𝜃) − 𝑆(𝑞𝐹𝐵(𝜃), 𝜃)]𝑑𝐹𝑃(𝜃) (83)

+ (𝜔𝑃 − 𝜔𝑅) 𝛾(1 − 𝛾)𝑅(𝛾, 𝑞), (84)

where the first two lines on the right-hand side are clearly negative, so

𝑊(𝛾, 𝑞) −𝑊(𝛾, 𝑞eff) ≤ (𝜔𝑃 − 𝜔𝑅) 𝛾(1 − 𝛾)𝑅(𝛾, 𝑞).

The statement of the lemma follows. □

Lemma 14. In the continuous-WTP environment of Section 3.3, if the share of rich
consumers 𝛾 ∈ (0, 1) is privately known to the firm, then in an optimal regulation
mechanism, 𝑅(𝛾) ≥ 0 for all 𝛾 and Π(𝛾) = 0.
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Proof. Take a mechanism that satisfies the IC and IR constraints. Since incentive
compatibility requires 𝑅 to be non-decreasing. Hence, there must be a cut-off
𝛾̂ ∈ [𝛾, 𝛾] such that at 𝑅(𝛾) < 0 for all 𝛾 < 𝛾̂ and 𝑅(𝛾) ≥ 0 for all 𝛾 > 𝛾̂.

Now modify the mechanism to introduce cost-plus regulation at the bottom:
in the new mechanism, 𝑞̃(𝜃, 𝛾) = 𝑞𝐹𝐵(𝜃) for all 𝛾 ≤ 𝛾̂ and all 𝜃, and the lowest
firm type’s profit is

Π̃(𝛾) = 0;

the allocation for 𝛾 > 𝛾̂ remains the same. Note that then 𝑅̃(𝛾) = 0 for all
𝛾 ≤ 𝛾̂. The arising mechanism clearly satisfies the condition that the quality
allocation must be non-decreasing in𝜃 (consumers’ IC). It also satisfies the firm’s
IC constraint that 𝑅̂ is non-decreasing as 𝑅̂(𝛾) = 𝑅(𝛾) ≥ 0 for 𝛾 > 𝛾̂, and the
firm’s IR constraint remains satisfied as well. By Lemma 13, the modification
increases the two first lines in the regulator’s payoff (79), and it clearly improves
the third line (as the firm’s profit is minimized for all 𝛾 ≤ 𝛾̂, while for all 𝛾 > 𝛾̂,
Π(𝛾) −Π(𝛾̂) = Π̃(𝛾) − Π̃(𝛾̂).

□

Since

E[𝜔𝑖 | 𝛾] − E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾] = 𝛾(1 − 𝛾) (𝐹𝑃(𝜃) − 𝐹𝑅(𝜃)) (𝜔𝑃 − 𝜔𝑅)
1 − 𝐹(𝜃 | 𝛾) ,

(as derived in the proof of Lemma 11), and Π(𝛾) ≥ 0 (as derived in 14) we can
rewrite the regulator’s objective (79) as∫ 𝛾

𝛾

∫ 𝜃

𝜃

[
𝜔̄𝑖(𝛾)

[
𝑆(𝑞(𝜃, 𝛾), 𝜃) + 𝑡(𝛾)

]
𝑓 (𝜃 | 𝛾) − 𝑘(𝑡(𝛾))

− 𝛾(1 − 𝛾) (𝐹𝑃(𝜃) − 𝐹𝑅(𝜃)) (𝜔𝑃 − 𝜔𝑅)𝑣(𝑞(𝜃, 𝛾)) (85)

− (𝜔̄+(𝛾) − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾)

[
𝑆(𝑞(𝜃, 𝛾), 𝜃)( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)) + (𝐹𝑅(𝜃) − 𝐹𝑃(𝜃))𝑣(𝑞(𝜃, 𝛾))

] ]
𝑑𝜃𝑑𝐺(𝛾),

Using Lemma 14, the regulator’s problem is to choose 𝑡 : Γ → R and 𝑞 :

Θ × Γ → 𝒬 to maximize (86) so that 𝑞 is non-decreasing in 𝜃 and

𝑅(𝑞(·, 𝛾)) :=
∫ 𝜃

𝜃

[
𝑆(𝑞(𝜃, 𝛾), 𝜃)( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)) + (𝐹𝑅(𝜃) − 𝐹𝑃(𝜃))𝑣(𝑞(𝜃, 𝛾))

]
𝑑𝜃

is non-decreasing in 𝛾 and non-negative. Clearly any optimal solution must
again have 𝑘′(𝑡(𝛾)) = 𝜔̄𝑖(𝛾) for almost all 𝛾.

In the following lemma, recall the definition

𝛿(𝛾) := 𝛾(1 − 𝛾)(𝜔𝑃 − 𝜔𝑅) − (𝜔̄+(𝛾) − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾) .
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Lemma 15. In the continuous-WTP environment of Section 3.3, take 𝛾 such that
𝛿(𝛾) < 0. Consider the “relaxed slice problem” of choosing 𝑞 : [𝜃, 𝜃] → R+ to
maximize

𝐴(𝑞) :=
∫ 𝜃

𝜃

[
𝜔̄𝑖(𝛾)

[
𝑆(𝑞(𝜃), 𝜃)

]
𝑓 (𝜃 | 𝛾)

− 𝛾(1 − 𝛾) (𝐹𝑃(𝜃) − 𝐹𝑅(𝜃)) (𝜔𝑃 − 𝜔𝑅)𝑣(𝑞(𝜃)) (86)

− (𝜔̄+(𝛾) − 𝜔𝐹)
1 − 𝐺(𝛾)
𝑔(𝛾)

[
𝑆(𝑞(𝜃), 𝜃)( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)) + (𝐹𝑅(𝜃) − 𝐹𝑃(𝜃))𝑣(𝑞(𝜃))

] ]
𝑑𝜃

(87)

subject to constraint∫ 𝜃

𝜃

[
𝑆(𝑞(𝜃), 𝜃)( 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃)) + (𝐹𝑅(𝜃) − 𝐹𝑃(𝜃))𝑣(𝑞(𝜃))

]
𝑑𝜃︸                                                                           ︷︷                                                                           ︸

:=𝑅(𝑞)

≥ 0. (88)

In any optimal solution, 𝑞(𝜃) = 𝑞𝐹𝐵(𝜃) := argmax𝑞 𝑆(𝑞, 𝜃) for almost all 𝜃 ∈
[𝜃, 𝜃].

Proof. Denote

Δ𝐹(𝜃) := 𝐹𝑅(𝜃) − 𝐹𝑃(𝜃), Δ 𝑓 (𝜃) := 𝑓𝑅(𝜃) − 𝑓𝑃(𝜃), 𝑆eff(𝜃) := 𝑆(𝑞𝐹𝐵(𝜃), 𝜃).

and notice that the objective is denoted by 𝑊 and the constraint function by
𝑅. Recall that we have the first-order stochastic dominance Δ𝐹(𝜃) < 0 for all
𝜃 ∈ (𝜃, 𝜃).

By the envelope theorem, for almost all 𝜃,

(𝑆eff)′(𝜃) = 𝜕

𝜕𝜃
𝑆(𝑞𝐹𝐵(𝜃), 𝜃) = 𝑣(𝑞𝐹𝐵(𝜃)), (89)

and note that

𝑅(𝑞𝐹𝐵) =
∫ 𝜃

𝜃
𝑆eff(𝜃)Δ 𝑓 (𝜃) 𝑑𝜃 +

∫ 𝜃

𝜃
Δ𝐹(𝜃) 𝑣(𝑞𝐹𝐵(𝜃)) 𝑑𝜃

=

∫ 𝜃

𝜃
𝑆eff(𝜃)Δ 𝑓 (𝜃) 𝑑𝜃 +

∫ 𝜃

𝜃
Δ𝐹(𝜃) (𝑆eff)′(𝜃) 𝑑𝜃

= 0,

where the second equality follows from (89) and the third equality follows
from integration by parts (using Δ𝐹(𝜃) = Δ𝐹(𝜃) = 0). So, as intuitively clear,
constraint (88) binds at 𝑞 = 𝑞𝐹𝐵.
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The Lagrangian of the problem is

ℒ(𝑞, 𝜇) = 𝐴(𝑞) + 𝜇𝑅(𝑞).

with KKT multiplier 𝜇 ≥ 0. Define

𝜇∗ = −𝛿(𝛾) > 0,

where the inequality follows by assumption. We have

ℒ(𝑞, 𝜇∗) =
∫ 𝜃

𝜃

[
𝛾𝜔𝑅 𝑓𝑅(𝜃) + (1 − 𝛾)𝜔𝑃 𝑓𝑃(𝜃)

]
𝑆(𝑞(𝜃), 𝜃) 𝑑𝜃.

For any feasible 𝑞,
𝐴(𝑞) ≤ ℒ(𝑞, 𝜇).

Since 𝑅(𝑞𝐹𝐵) = 0, we have 𝐴(𝑞𝐹𝐵) = ℒ(𝑞𝐹𝐵 , 𝜇). Hence

𝐴(𝑞𝐹𝐵) − 𝐴(𝑞) ≥ ℒ(𝑞𝐹𝐵 , 𝜇∗) − ℒ(𝑞, 𝜇∗)

=

∫ 𝜃

𝜃

[
𝛾𝜔𝑅 𝑓𝑅(𝜃) + (1 − 𝛾)𝜔𝑃 𝑓𝑃(𝜃)

] (
𝑆eff(𝜃) − 𝑆(𝑞(𝜃), 𝜃)

)
𝑑𝜃

≥ 0

where the last inequality is strict unless 𝑞(𝜃) = 𝑞𝐹𝐵(𝜃) for almost all 𝜃. The
claim of the lemma follows.

□

Lemma 16. If 𝛾 is privately known to the firm, then there is a cut-off 𝛾∗ ≥ inf{𝛾 ∈
[𝛾, 𝛾] : 𝛿(𝛾) ≥ 0} > 𝛾 such that any optimal regulation mechanism has cost-plus
regulation for almost all 𝛾 ≤ 𝛾∗, 𝜃 ∈ [𝜃, 𝜃]:

𝑞(𝜃, 𝛾) = argmax
𝑞

𝑆(𝑞, 𝜃), 𝑝(𝑞(𝜃, 𝛾)) = 𝑐(𝑞(𝜃, 𝛾)) − 𝑡(𝛾).

Proof. The regulator’s problem is to choose 𝑞 : Θ × Γ → 𝒬 to maximize (86) so
that 𝑞 is non-decreasing in 𝜃 and 𝑅(𝑞(·, 𝛾)) is non-negative and non-decreasing
for all 𝛾.

Recall 𝛿 = 𝛾(1 − 𝛾)(𝜔𝑃 − 𝜔𝑅) − (𝜔̄+(𝛾) − 𝜔𝐹)1−𝐺(𝛾)
𝑔(𝛾) , and let

𝛾∗ := inf{𝛾 ∈ [𝛾, 𝛾] : 𝛿(𝛾) ≥ 0}.

Note that 𝛾∗ > 𝛾 by continuity of 𝛿 and since 𝛿(𝛾) < 0.
Consider a relaxed problem that ignores the monotonicity constraints. By

Lemma 15, for almost all 𝛾 ≤ 𝛾∗ and 𝜃 ∈ [𝜃, 𝜃], the solution must satisfy
𝑞(𝜃, 𝛾) = 𝑞𝐹𝐵(𝜃). Furthermore, the choice 𝑞(𝜃, 𝛾) = 𝑞𝐹𝐵(𝜃) for all 𝛾 ≤ 𝛾∗ clearly
satisfies the monotonicity constraints for all 𝛾 ≤ 𝛾∗, and any choice of allocation
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𝑞(·, 𝛾) for all 𝛾 > 𝛾∗ that can ever be part of a feasible solution remains feasible
with the efficient allocation for 𝛾 ≤ 𝛾∗. Therefore, any optimal regulation
mechanism must have efficient allocation for almost all 𝛾 ≤ 𝛾∗, which together
with Π(𝛾) = 0 implies cost-plus regulation. □

Part (ii) of Proposition 2 follows directly from Lemmas 14 and 16; note that
whenever cost-plus regulation is not implemented, we have 𝑅(𝛾) > 0, directly
implying that the average mark-up paid by a rich consumer in the market strictly
exceeds the average mark-up paid by a poor consumer.

A.13 Proof of Lemma 4

Proof. As noted in the text, the firm’s selling problem can be written as

max
𝑞(·) non-decreasing

∫ 𝜃

𝜃

[
𝜓(𝜃 | 𝛾) 𝑣(𝑞(𝜃)) − 𝑐(𝑞(𝜃)) + 𝜏(𝑞(𝜃))︸                                         ︷︷                                         ︸

:=𝜋(𝜃,𝑞(𝜃))

]
𝑑𝐹(𝜃 | 𝛾). (90)

Since
𝜕2

𝜕𝜃 𝜕𝑞
𝜋(𝜃, 𝑞) = 𝜓′(𝜃 | 𝛾) 𝑣′(𝑞) > 0,

𝜋 has strictly increasing differences in (𝜃, 𝑞). By Topkis’s theorem (Milgrom and
Shannon, 1994; Topkis, 1998), the pointwise argmax correspondence 𝑄∗(𝜃) =

argmax𝑞∈𝒬 𝜋(𝜃, 𝑞) is nondecreasing in the strong set order. It follows that
the monotonicity constraint in (90) does not bind: a non-decreasing 𝑞(·) with
𝑞(𝜃) ∈ 𝑄∗(𝜃) for all 𝜃 solves problem (90).

By the envelope theorem for monotone choice (Milgrom and Segal, 2002),
given that the firm chooses 𝑞 to maximize profit,

𝜋
(
𝜃, 𝑞(𝜃)

)
= 𝜋

(
𝜃, 𝑞(𝜃)

)
+

∫ 𝜃

𝜃
𝜓′(𝑧 | 𝛾) 𝑣

(
𝑞(𝑧)

)
𝑑𝑧. (91)

Integrating (91) with respect to 𝐹(· | 𝛾) and using integration by parts gives

Π(𝛾) =
∫ 𝜃

𝜃
𝜋
(
𝜃, 𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾)

= 𝜋
(
𝜃, 𝑞(𝜃)

)
+

∫ 𝜃

𝜃

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾). (92)

Rearranging (91) yields the formula

𝜏
(
𝑞(𝜃)

)
= 𝜋

(
𝜃, 𝑞(𝜃)

)
− 𝜓(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
+ 𝑐

(
𝑞(𝜃)

)
+

∫ 𝜃

𝜃
𝜓′(𝑧 | 𝛾) 𝑣

(
𝑞(𝑧)

)
𝑑𝑧.

(93)
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To see that any weakly increasing 𝑞 is implementable, fix such a 𝑞. Define 𝜏

on the image 𝑞[Θ] via (93), and set 𝜏(𝑞) = 𝜏 for 𝑞 ∈ 𝒬\𝑞[Θ]. This is well-defined:
if 𝑞(𝜃) = 𝑞(𝜃′) with 𝜃′ < 𝜃, then 𝑞 is constant on [𝜃′, 𝜃], and by the fundamental
theorem of calculus,

𝜏
(
𝑞(𝜃)

)
− 𝜏

(
𝑞(𝜃′)

)
=
(
𝜓(𝜃′) − 𝜓(𝜃)

)
𝑣
(
𝑞(𝜃)

)
+
∫ 𝜃

𝜃′
𝜓′(𝑧 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝑧 = 0.

Finally, for 𝜏 sufficiently small, deviating to 𝑞′ ∉ 𝑞[Θ] is unprofitable:

𝜏 ≤ 𝜋
(
𝜃, 𝑞(𝜃)

)
− sup

(𝜃,𝑞)∈[𝜃,𝜃]×𝒬
{𝜓(𝜃 | 𝛾)𝑣(𝑞) − 𝑐(𝑞)}

ensures 𝜋(𝜃, 𝑞(𝜃)) ≥ 𝜋(𝜃, 𝑞′). If the deviation is to some 𝑞(𝜃′) ∈ 𝑞[Θ], then

𝜋
(
𝜃, 𝑞(𝜃)

)
− 𝜋

(
𝜃, 𝑞(𝜃′)

)
=

∫ 𝜃

𝜃′
𝜓′(𝑧 | 𝛾)

[
𝑣
(
𝑞(𝑧)

)
− 𝑣

(
𝑞(𝜃′)

) ]
𝑑𝑧 ≥ 0,

using that𝜓′ ≥ 0, 𝑣 and 𝑞 are nondecreasing. Thus 𝑞 is the firm’s profit-maximizing
schedule under 𝜏. □

A.14 Proof of Proposition 3

Proof. Express the regulator’s objective in terms of (𝑞,𝜋(𝜃)). By Lemma 4,

Π(𝛾) = 𝜋(𝜃, 𝑞(𝜃)) +
∫ 𝜃

𝜃

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾).

Integrating (15) over 𝐹(· | 𝛾) gives the regulator’s total spending

𝑇(𝑞,𝜋(𝜃)) :=
∫ 𝜃

𝜃
𝜏
(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾)

= 𝜋(𝜃) +
∫ 𝜃

𝜃

[1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣(𝑞(𝜃)) − 𝜓(𝜃 | 𝛾) 𝑣(𝑞(𝜃)) + 𝑐(𝑞(𝜃))

]
𝑑𝐹(𝜃 | 𝛾).

Consumer utility contributes∫
𝜔 𝑢(𝜃) 𝑑𝐹̃(𝜃, 𝜔) =

∫ 𝜃

𝜃
E[𝜔𝑖 | 𝜃]

∫ 𝜃

𝜃
𝑣
(
𝑞(𝑧)

)
𝑑𝑧 𝑑𝐹(𝜃 | 𝛾)

=

∫ 𝜃

𝜃
E[𝜔𝑖 | 𝜃′ ≥ 𝜃] 1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) 𝑣
(
𝑞(𝜃)

)
𝑑𝐹(𝜃 | 𝛾).

Hence the regulator chooses nondecreasing 𝑞, 𝜋(𝜃) ≥ 0, and 𝑇 ∈ R to maximize∫ 𝜃

𝜃

{
E[𝜔𝑖 | 𝜃′ ≥ 𝜃] 1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) 𝑣(𝑞(𝜃))+𝜔𝐹

[
𝜋(𝜃)+1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣(𝑞(𝜃))
]
−𝑘(𝑇)

}
𝑑𝐹(𝜃 | 𝛾)
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subject to

𝑇 =

∫ 𝜃

𝜃

[
𝜋(𝜃)+1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣(𝑞(𝜃))−𝜓(𝜃 | 𝛾) 𝑣(𝑞(𝜃))+𝑐(𝑞(𝜃))
]
𝑑𝐹(𝜃 | 𝛾).

(94)
By standard maximum principles for variational problems with an integral

constraint (e.g., Hellwig, 2008), at almost every 𝜃 where 𝑞 is strictly increasing
the stationarity condition is

0 = E[𝜔𝑖 | 𝜃′ ≥ 𝜃] 1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) + 𝜔𝐹

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣′(𝑞(𝜃))

(95)

− 𝜅
[1 − 𝐹(𝜃 | 𝛾)

𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) − 𝜓(𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) + 𝑐′(𝑞(𝜃))
]
,

where 𝜅 = 𝑘′(𝑇). Rearrangement gives the three-term decomposition in the
proposition. The FOC for𝑇 yields 𝜅 = 𝑘′(𝑇); the FOC for𝜋(𝜃) yields 𝜔𝐹−𝜅+𝜇 =

0 with complementary slackness 𝜇 ·𝜋(𝜃) = 0, hence either 𝜅 = 𝜔𝐹 and 𝜋(𝜃) ≥ 0,
or 𝜅 > 𝜔𝐹 and 𝜋(𝜃) = 0.

At almost every point where 𝑞 is strictly increasing, it is differentiable; dif-
ferentiating (15) in 𝜃 gives

𝜏′
(
𝑞(𝜃)

)
𝑞′(𝜃) = −𝜓(𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) 𝑞′(𝜃) + 𝑐′(𝑞(𝜃)) 𝑞′(𝜃),

so (where 𝑞′(𝜃) ≠ 0)

𝜏′
(
𝑞(𝜃)

)
= −𝜓(𝜃 | 𝛾) 𝑣′(𝑞(𝜃)) + 𝑐′(𝑞(𝜃)).

Substituting this into (95) yields the marginal-subsidy formula (16).
Finally, I will verify the existence of a solution to the regulator’s optimization

problem. First, since 𝑣 is concave with 𝑣′(𝑞) → 0 as 𝑞 → ∞ and 𝑐 is convex with
𝑐′(𝑞) > 0, there exists a finite 𝑞(𝜅) such that

𝑣′
(
𝜅 𝜃 − (𝜅 − E[𝜔𝑖 | 𝜃′ ≥ 𝜃]) 1 − 𝐹

𝑓
− (𝜅 − 𝜔𝐹)

1 − 𝐹

𝑓

)
− 𝜅𝑐′ < 0

for all 𝑞 ≥ 𝑞(𝜅) for all 𝜃. Therefore, for any 𝜅 > 0, we may restrict attention
to compact interval of qualities [0, 𝑞(𝜅)]. With the uniform bound 𝑞(𝜅), the
set of non-decreasing functions 𝑞 : Θ → [0, 𝑞(𝜅)] is (sequentially) compact in
𝐿1. Furthermore, since 𝑘 satisfies 𝑘′(𝑇) → ∞ as 𝑇 → ∞ and 𝜋(𝜃) ≥ 0, we can
also restrict 𝜋(𝜃) and 𝑇 to some compact intervals [0,𝜋] and [𝑇, 𝑇], respectively.
All integrands are continuous and bounded, so by dominated convergence,
the regulator’s objective is continuous on a compact set. By the Weierstrass
argument, the existence of a solution follows.
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□

A.15 Proof of Lemma 5

Proof. Let 𝑞(·) := 𝑞(·|𝛾) denote the allocation in the highest demand state 𝛾. It
follows directly from Lemma 4 in the known-𝛾 environment that there exists a
subsidy schedule 𝜏 such that 𝑞 is implemented in state 𝛾.

Define then virtual–value matching map

𝑀(𝜃, 𝛾) := 𝜓−1(𝜓(𝜃 | 𝛾) | 𝛾
)
.

Since 𝜓 is continuous and strictly increasing in both 𝜃 and 𝛾 for all [𝜃, 𝜃) × Γ,
with 𝜓(𝜃, 𝛾) constant in 𝛾, 𝑀 : [𝜃, 𝜃] × Γ → [𝜃, 𝜃] is a well-defined surjective
function. Note that 𝜓

(
𝑀(𝜃, 𝛾) | 𝛾

)
= 𝜓(𝜃 | 𝛾).

Now take any equilibrium quality allocation 𝑞. By the proof of Lemma 4, 𝑞
must be such that

𝑞(𝜃, 𝛾) ∈ argmax
𝑞≥0

{𝜓(𝜃 | 𝛾)𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞)}

for almost all (𝜃, 𝛾).
The argmax sets clearly coincide in the following way for all 𝜃, 𝛾:

𝐴(𝜃, 𝛾) := argmax
𝑞≥0

{𝜓(𝜃 | 𝛾)𝑣(𝑞)−𝑐(𝑞)+𝜏(𝑞)} = argmax
𝑞≥0

{𝜓(𝑀(𝜃, 𝛾) | 𝛾)𝑣(𝑞)−𝑐(𝑞)+𝜏(𝑞)}.

This implies that for all (𝜃, 𝛾), 𝑞(𝑀(𝜃, 𝛾)) is one of the profit-maximizing quality
choices for the firm at (𝜃, 𝛾).

However, even though the argmax sets coincide, we can have 𝑞(𝜃, 𝛾) ≠

𝑞(𝑀(𝜃, 𝛾), 𝛾) if the argmax sets are not singletons. Yet, the monotone selection
theorem of Milgrom and Shannon (1994) implies that since 𝜓(𝑀(𝜃, 𝛾) | 𝛾)𝑣(𝑞)−
𝑐(𝑞) + 𝜏(𝑞) has strictly increasing differences in (𝜃, 𝑞), any selection 𝑞∗𝛾(𝜃) ∈
argmax𝑞≥0𝜓(𝜃 | 𝛾)𝑣(𝑞) − 𝑐(𝑞) + 𝜏(𝑞) is increasing in 𝜃, so for any 𝜃′ < 𝜃 < 𝜃′′,

𝑞(𝜃′, 𝛾) ≤ inf 𝐴(𝜃, 𝛾) and 𝑞(𝜃′′, 𝛾) ≥ sup𝐴(𝜃, 𝛾).

Therefore, if 𝐴(𝜃, 𝛾) contains more than one point, allocation 𝑞(·, 𝛾) must have
a jump at 𝜃. Since every monotone real-valued function has at most countably
many points of discontinuity, the set {𝜃 : |𝐴(𝜃, 𝛾)| > 1} is countable. Out-
side this countable set, 𝐴(𝜃, 𝛾) must be a singleton and 𝑞(𝜃, 𝛾) = 𝑞

(
𝑀(𝜃, 𝛾)

)
.

Therefore, for all 𝛾 and almost every 𝜃,

𝑞(𝜃, 𝛾) = 𝑞(𝜓−1(𝜓(𝜃 | 𝛾) | 𝛾)).

Finally, from Section 4.1, we know that for any fixed state 𝛾, allocation 𝑞(·, 𝛾)
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and base-level rent 𝜋(𝜃, 𝛾) determine all payoffs. We have now proved that 𝑞(·)
determines allocation 𝑞(·, 𝛾) for any state. Furthermore, 𝜋(𝜃, 𝛾) together with
𝑞(·) determines 𝜋(𝜃, 𝛾) for all 𝛾, because

𝜋(𝜃, 𝛾) = 𝜋
(
𝜓−1(𝜓(𝜃 | 𝛾) | 𝛾

)
, 𝛾

)
= 𝜋(𝜃, 𝛾) +

∫ 𝜓−1
(
𝜓(𝜃|𝛾)|𝛾

)
𝜃

𝜓′(𝑧 | 𝛾) 𝑣
(
𝑞(𝑧)

)
𝑑𝑧,

(96)

by the envelope theorem result already discussed. This proves the final claim
of the lemma that the allocation 𝑞 together with base-level rent 𝜋(𝜃, 𝛾) ≥ 0 pins
down all payoffs.

□

A.16 Proof of Proposition 4

Proof. By Lemma 5, we know that the allocation in the highest demand state 𝛾,
𝑞(·) := 𝑞(·|𝛾), together with base-level rent 𝜋(𝜃, 𝛾), fixes the whole allocation
𝑞 and all the payoffs. Proposition 4 characterizes the optimal choice of 𝑞 and
𝜋(𝜃, 𝛾). To derive the characterization, we must derive the components of
the regulator’s payoff—the firm’s profit, each consumer type’s payoff, and the
regulator’s spending in each state 𝛾 as a function of 𝑞 and 𝜋(𝜃, 𝛾).

Recall that I make the following definitions in the text:

𝐿(𝜃, 𝛾) := 𝜓−1 (𝜓(𝜃 | 𝛾) | 𝛾
)

for all 𝜃 ∈ [𝜃, 𝜃], 𝛾 ∈ [𝛾̂(𝜃), 𝛾],
𝛾̂(𝜃) := (𝜓(𝜃|·))−1(min{𝜓(𝜃|𝛾),𝜓(𝜃|𝛾)}).

It is also helpful to make the following additional definition for this proof:

𝜃min(𝛾) := 𝜓−1(𝜓(𝜃 | 𝛾) | 𝛾
)
.

By Lemma 4, for any state 𝛾, we can write the firm’s profit in state 𝛾 as

Π(𝛾) = 𝜋(𝜃, 𝛾) +
∫ 𝜃

𝜃

1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃, 𝛾)

)
𝑑𝐹(𝜃 | 𝛾). (97)

I will now perform a change variables using 𝜃 = 𝐿(𝜃̃, 𝛾). Note that

𝜕𝐿(𝜃̃, 𝛾)
𝜕𝜃̃

=
𝜓′(𝜃̃ | 𝛾)

𝜓′(𝐿(𝜃̃, 𝛾) | 𝛾) . (98)

With the change of variables, we can then write the state-𝛾 firm’s profit (97) as

Π(𝛾) = 𝜋(𝜃, 𝛾) +
∫ 𝜃

𝜃min(𝛾)
(1 − 𝐹(𝐿(𝜃̃, 𝛾) | 𝛾))𝜓′(𝜃̃ | 𝛾) 𝑣

(
𝑞(𝜃̃)

)
𝑑𝜃̃ (99)
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=𝜋(𝜃, 𝛾) +
∫ 𝜃min(𝛾)

𝜃
𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃, (100)

+
∫ 𝜃

𝜃min(𝛾)
(1 − 𝐹(𝐿(𝜃, 𝛾) | 𝛾))𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃

where the second equality plugs in (96) to express 𝜋(𝜃, 𝛾) in terms of 𝑞 and
𝜋(𝜃, 𝛾).

Let us then solve for the consumers’ contribution to the regulator’s payoff in
state 𝛾:

𝐵(𝛾) :=
∫ 𝜃

𝜃
E[𝜔𝑖 | 𝜃, 𝛾]

( ∫ 𝜃

𝜃
𝑣
(
𝑞(𝑧, 𝛾)

)
𝑑𝑧

)
𝑑𝐹(𝜃 | 𝛾)

=

∫ 𝜃

𝜃
E[𝜔𝑖 | 𝜃′ ≥ 𝜃, 𝛾](1 − 𝐹(𝜃|𝛾))𝑣

(
𝑞(𝜃, 𝛾)

)
𝑑𝜃

=

∫ 𝜃

𝜃min(𝛾)
E[𝜔𝑖 | 𝜃′ ≥ 𝐿(𝜃, 𝛾), 𝛾](1 − 𝐹(𝐿(𝜃, 𝛾)|𝛾)) 𝜓′(𝜃 | 𝛾)

𝜓′(𝐿(𝜃, 𝛾) | 𝛾) 𝑣 (𝑞(𝜃)) 𝑑𝜃
(101)

where the second equality uses integration by parts and the third equality
performs a similar change of variables as was done in (99).

Finally, the regulator’s spending in state 𝛾 is

𝑇(𝛾) =

∫ 𝜃

𝜃
𝜏
(
𝑞(𝜃, 𝛾)

)
𝑑𝐹(𝜃 | 𝛾)

=𝜋(𝜃, 𝛾)

+
∫ 𝜃

𝜃

[(1 − 𝐹(𝜃 | 𝛾)
𝑓 (𝜃 | 𝛾) 𝜓′(𝜃 | 𝛾) − 𝜓(𝜃 | 𝛾)

)
𝑣(𝑞(𝜃, 𝛾)) + 𝑐(𝑞(𝜃, 𝛾))

]
𝑑𝐹(𝜃 | 𝛾)

=𝜋(𝜃, 𝛾) +
∫ 𝜃min(𝛾)

𝜃
𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃

+
∫ 𝜃

𝜃min(𝛾)

[(1 − 𝐹(𝐿(𝜃, 𝛾) | 𝛾)
𝑓 (𝐿(𝜃, 𝛾) | 𝛾) 𝜓′(𝐿(𝜃, 𝛾) | 𝛾) − 𝜓(𝐿(𝜃, 𝛾) | 𝛾)

)
𝑣(𝑞(𝜃)) + 𝑐(𝑞(𝜃))

]
(102)

𝜓′(𝜃 | 𝛾)
𝜓′(𝐿(𝜃, 𝛾) | 𝛾) 𝑓 (𝐿(𝜃, 𝛾) | 𝛾)𝑑𝜃,

where the second equality uses the formula for the regulator’s spending in
Lemma 4, and the third equality plugs in (96) and performs a similar change of
variables as previously.

The regulator’s subsidy design problem is then to choose non-decreasing
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allocation 𝑞 : Θ → 𝒬, base-level rent 𝜋(𝜃, 𝛾) ≥ 0 and spending 𝑇(𝛾) for each
state 𝛾 to maximize∫ 𝛾

𝛾

[
𝜔𝐹Π(𝛾) + 𝐵(𝛾) − 𝑘(𝑇(𝛾))

]
𝑑𝐺(𝛾) (103)

=

∫ 𝛾

𝛾

[
𝜔𝐹

(
𝜋(𝜃, 𝛾) +

∫ 𝜃min(𝛾)

𝜃
𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃 (104)

+
∫ 𝜃

𝜃min(𝛾)
(1 − 𝐹(𝐿(𝜃, 𝛾) | 𝛾))𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃

)
(105)

+
∫ 𝜃

𝜃min(𝛾)
E[𝜔𝑖 | 𝜃′ ≥ 𝐿(𝜃, 𝛾), 𝛾](1 − 𝐹(𝐿(𝜃, 𝛾)|𝛾)) 𝜓′(𝜃 | 𝛾)

𝜓′(𝐿(𝜃, 𝛾) | 𝛾) 𝑣 (𝑞(𝜃)) 𝑑𝜃
(106)

− 𝑘(𝑇(𝛾))
]
𝑑𝐺(𝛾) (107)

=𝜔𝐹𝜋(𝜃, 𝛾) +
∫ 𝜃

𝜃

[
𝜔𝐹

( ∫ 𝛾̂(𝜃)

𝛾
𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝐺(𝛾) (108)

+
∫ 𝛾

𝛾̂(𝜃)
(1 − 𝐹(𝐿(𝜃, 𝛾) | 𝛾))𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝐺(𝛾)

)
(109)

+
∫ 𝛾

𝛾̂(𝜃)
E[𝜔𝑖 | 𝜃′ ≥ 𝐿(𝜃, 𝛾), 𝛾](1 − 𝐹(𝐿(𝜃, 𝛾)|𝛾)) 𝜓′(𝜃 | 𝛾)

𝜓′(𝐿(𝜃, 𝛾) | 𝛾) 𝑣 (𝑞(𝜃)) 𝑑𝐺(𝛾)

(110)

−
∫ 𝛾

𝛾
𝑘(𝑇(𝛾))𝑑𝐺(𝛾)

]
𝑑𝜃 (111)

(where the second equality changes the order of integration) subject to con-
straints

𝑇(𝛾) =𝜋(𝜃, 𝛾) +
∫ 𝜃min(𝛾)

𝜃
𝜓′(𝜃 | 𝛾) 𝑣

(
𝑞(𝜃)

)
𝑑𝜃

+
∫ 𝜃

𝜃min(𝛾)

[(1 − 𝐹(𝐿(𝜃, 𝛾) | 𝛾)
𝑓 (𝐿(𝜃, 𝛾) | 𝛾) 𝜓′(𝐿(𝜃, 𝛾) | 𝛾) − 𝜓(𝐿(𝜃, 𝛾) | 𝛾)

)
𝑣(𝑞(𝜃)) + 𝑐(𝑞(𝜃))

]
(112)

𝜓′(𝜃 | 𝛾)
𝜓′(𝐿(𝜃, 𝛾) | 𝛾) 𝑓 (𝐿(𝜃, 𝛾) | 𝛾)𝑑𝜃,

for all 𝛾 ∈ Γ.
Necessary conditions for a solution to a problem of this form are presented,
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e.g., in Hellwig (2008). In particular, at almost every 𝜃 ∈ Θ, the following
necessary conditions are obtained:

– Stationarity condition for 𝑞(𝜃), satisfied at almost every 𝜃 ∈ Θ where
optimal allocation 𝑞 is strictly increasing:

0 =

∫ 𝛾

𝛾̂(𝜃)

{
𝜅(𝛾)

[
𝐿𝑣′(𝑞) − 𝑐′(𝑞)

]𝜓′(𝜃 | 𝛾)
𝜓′(𝐿 | 𝛾)

− (𝜅(𝛾) − E[𝜔𝑖 | 𝜃′ ≥ 𝐿, 𝛾])1 − 𝐹(𝐿|𝛾)
𝑓 (𝐿|𝛾)

𝜓′(𝜃 | 𝛾)
𝜓′(𝐿 | 𝛾)𝑣

′(𝑞) (113)

− (𝜅(𝛾) − 𝜔𝐹)
1 − 𝐹(𝐿|𝛾)
𝑓 (𝐿|𝛾) 𝜓′(𝜃|𝛾) 𝑣′(𝑞)

}
𝑓 (𝐿|𝛾)𝑑𝐺(𝛾)

−
∫ 𝛾̂(𝜃)

𝛾
(𝜅(𝛾) − 𝜔𝐹)𝜓′(𝜃 | 𝛾)𝑣′(𝑞)𝑑𝐺(𝛾).

– First-order condition for 𝑇:

𝑘′(𝑇(𝛾)) = 𝜅(𝛾)

– First-order condition for 𝜋(𝜃, 𝛾):

𝜔𝐹 −
∫

𝜅(𝛾)𝑑𝐺(𝛾) + 𝜇 = 0 for some 𝜇 ≥ 0

with complementary slackness 𝜇𝜋(𝜃, 𝛾) = 0.

Hence e, either
∫
𝜅(𝛾)𝑑𝐺(𝛾) = 𝜔𝐹 and 𝜋(𝜃, 𝛾) ≥ 0, or

∫
𝜅(𝛾)𝑑𝐺(𝛾) > 𝜔𝐹

and 𝜋(𝜃, 𝛾) = 0, as stated in the proposition.

Finally, I will verify the existence of a solution to the regulator’s optimization
problem. First, since 𝑣 is concave with 𝑣′(𝑞) → 0 as 𝑞 → ∞ and 𝑐 is convex
with 𝑐′(𝑞) > 0, there exists a finite 𝑞̂(𝜅) such that the right-hand side of (113) is
negative for all 𝑞 ≥ 𝑞̂(𝜅), so that we may restrict attention to compact interval
of qualities [0, 𝑞̂(𝜅)]. With the uniform bound 𝑞̂(𝜅), the set of non-decreasing
functions 𝑞 : Θ → [0, 𝑞̂(𝜅)] is (sequentially) compact in 𝐿1. Furthermore, since
𝑘 satisfies 𝑘′(𝑇) → ∞ as 𝑇 → ∞ and 𝜋(𝜃, 𝛾) ≥ 0, we can also restrict 𝜋(𝜃, 𝛾) and
𝑇(𝛾) to some compact intervals [0,𝜋] and [𝑇, 𝑇], respectively. All integrands
are continuous and bounded, so by dominated convergence, the regulator’s
objective is continuous on a compact set. By the Weierstrass argument, the
existence of a solution follows.

□
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